Электрическая подвижность ионов в растворе. Механизм движения ионов

Ионные электропроводности (подвижности) – получают умножением абсолютных скоростей ионов v + и v _ на число Фарадея: для катиона  + = v + *F и аниона:  - = v - *F.

Примеры решения задач

Пример 1.

Вычислить ЭДС соответствующего гальванического элемента, константу равновесия окислительно-восстановительной реакции и определить наиболее вероятное направление самопроизвольного протекания реакции:

Сd 0 (тв) + Аg + (p)  Сd 2+ (p) + Аg 0 (тв),

еcли концентрации ионов равны:

С А g + = 10  4 моль/л; C С d 2+ = 10  3 моль/л.

Решение:

Вычислим электродные потенциалы соответствующих электродов по формуле Нернста:

Е 1 = Е 0 1 +  lg С С d 2+ ;

Стандартный электродный потенциал кадмия составляет – 0,40 В.

Е 1 =  0,40 +  lg 10  3 =  0,49 В;

Для серебра стандартный потенциал равен +0,80 В, тогда:

Е 2 = Е 0 2 +  lg С А g +

Е 2 = 0,80 +  lg 10  4 =+ 0,56 В.

Поскольку Е 1  Е 2 , реакция будет протекать слева направо, т. е.

Сd 0 (тв) + 2Аg + (p)  Сd 2+ (p) + 2Аg 0 (тв)

Запишем схему гальванического элемента:

 Сd 0  Сd 2+ Аg +  Аg 0 +,

Сd 0  2е  Сd 2+  на аноде происходит процесс окисления;

Аg + + е  Аg 0  на катоде происходит процесс восстановления.

ЭДС такого элемента будет равна:

ЭДС = Е 2  Е 1

ЭДС = 0,56  (0,49) = 1,05 В.

Для вычисления константы равновесия, вспомним связь между стан­дартной ЭДС и стандартной энергией Гиббса: G =  nFE.

С другой стороны, G связана с константой равновесия K уравне­нием G =  2,3 RT lg K. Для 25°С (298 К) последнее уравнение после подстановки в него значений R (8,31 Дж/моль K) и F (96485 Кл/экв) преобразуется к такому виду (Е = Е 2  Е 1):

lg K =  ;

2  (0,8 – (– 0,4)) 2  1,2

lg K =  =  = 35,6.

Отсюда K = 10 35,6 .

Из этого следует, что реакция между кадмием и ионами серебра практически протекает в сторону продуктов реакции.

Пример 2.

Ток в 2,5 А, проходя через раствор электролита в течение 30 мин, выделяет из раствора 2,77 г металла. Найти эквива­лентную массу металла.

Решение:

Согласно закону Фарадея:

m = (ЭI)/F.

Тогда Э = (m F)/ I; Э = (2,77 96485)/(2,5  З0  60) = 59,4 г/моль.

Пример 3.

Какой из металлов: кадмий, медь, платина, молибден, ртуть  в паре с никелем в гальваническом элементе будет анодом? Составьте схему гальванического элемента.

Решение:

Запишем значения стандартных электродных потенциалов для данных металлов:

Е Cd  Cd +2 =  0,40 В; Е Mo  Mo +2 =  0,20 В;

Е Cu  Cu +2 = + 0,34 В; Е Pt  Pt +2 = + 1,20 В;

Е Ni  Ni +2 =  0,25 В.

При работе гальванического элемента электрохимическая система с более высоким значением электродного потенциала восстанавливается, выступая в качестве окислителя, а с более низким – окисляется, являясь восстановителем.

Электрод, на котором в ходе реакции происходит процесс окисления, называется анодом. Поэтому Е АНОД  Е КАТОД. Сравнивая значения электродных потенциалов металлов со значением Е Ni  Ni ++ , получаем Е Cd  Cd +2  Е Ni  Ni +2 . Следовательно, анодом в паре с никелем в гальваническом элементе будет кадмий.

Схема гальванического элемента записывается следующим образом:

Cd Cd 2+  Ni 2+  Ni.

Пример 4.

В контакте с каким из металлов: платина, никель, железо, хром  коррозия цинка будет проходить быстрее и почему?

Решение:

Коррозия – самопроизвольный процесс, и для него G =  nFЕ, поэтому, чем больше значение ЭДС, тем больше вероятность протекания коррозии.

Е = Е Pt  Pt +2  Е Zn  Zn +2 = 1,2  (0,76) = 1,98 B;

Е = Е Ni  Ni +2  Е Zn  Zn +2 = 0,25  (0,76) = 0,51 B;

Е = Е Fe  Fe +2  Е Zn  Zn +2 = 0,44  (0,76) = 0,32 B;

Е = Е Cr  Cr +3  Е Zn  Zn +2 = 0,74  (0,76) = 0,02 B.

Поэтому в контакте с платиной коррозия цинка протекает быстрее.

Пример 5.

Какое вещество выделяется у катода и анода при электролизе водного раствора смеси солей: CuSO 4 ; NaNO 3 ; K 2 SO 4 . Концентрация всех солей в растворе одинаковы.

Решение:

Если система, в которой проводят электролиз, содержит различные окислители, то на катоде будет восстанавливаться наиболее активный из них, т.е. окисленная форма той электрохимической системы, которой отвечает наибольшее значение электродного потенциала.

Cu 2+ + 2е - = Cu: Е Cu  Cu +2 = + 0,34 В

2Н + + е - = Н 2: Е Н  Н+ = 0,0 В

К + + е - = К: Е К  К+ =  2,92 В

Na + + е - = Na: Е Na  Na + =  2,71 В

Поскольку Е Cu  Cu +2 обладает наибольшим значением электродного потенциала, то именно медь будет выделяться на катоде. Аналогично, если в системе имеется несколько восстановителей, на аноде будет окисляться наиболее активный из них, т.е. восстановленная форма той электрохимической системы, которая характеризуется наименьшим значением электродного потенциала.

При электролизе водных растворов нитратов, сульфатов на инертном электролизе происходит окисление гидроксид –ионов с образованием кислорода:

4 ОН – = О 2  + 2Н 2 О + 4е - Е 0 = 0,40 В.

Пример 6.

Что произойдет, если в раствор медного купороса CuSO 4 опустить кусок железа?

Решение:

Запишем электродные полуреакции:

Cu 0  Cu 2+ + 2е - Е Cu  Cu +2 = + 0,34 В;

Fe 0  Fe 2+ + 2е - Е Fe  Fe+2 = - 0,44 В;

т.к. Е Cu  Cu +2  Е Fe  Fe +2 , то наиболее предпочтительна первая полуреакция.

Действительно, отрицательное значение стандартного электродного потенциала FeFe 2+ означает, что железо должно окисляться катионами водорода сильнее, чем медь:

Fe + 2Н +  Fe 2+ + Н 2 .

Е Cu  Cu +2 = + 0,34 В показывает, что водород легче окисляется:

Cu 2+ + Н 2  Cu 0 + 2Н + .

Суммируя реакции, получаем: Fe + Cu 2+  Fe 2+ + Cu 0 . Следовательно, полная реакция окисления железа самопроизвольно протекает в указанном направлении, т.е. на поверхности железа осаждается слой металлической меди.

Пример 7

Рассчитайте электрохимический эквивалент кадмия.

Решение:

Электрохимический эквивалент металла рассчитывается по следующей формуле:

Э =  ,

где М – молярная масса элемента; n – валентность; F – число Фарадея.

112,41 г/моль

Э =  = 5,83 * 10 – 4 г/Кл = 0,583 мг/Кл.

2 * 96485 Кл/моль

Пример 8

Вычислить число переноса аниона С1 - в бесконечно разбавленном растворе NaС1 при 25 С, если известны подвижности катиона и аниона в этом растворе:  Na + = 50,1 см 2 /Ом* моль;  Cl - = 76,35 см 2 /Ом*моль.

Решение:

При электролизе через каждый электрод проходят одинаковые количества электричества, но каждый вид ионов переносит неодинаковые доли электричества ввиду различия скоростей ионов.

Числа переноса (t) можно выразить через отноше­ние абсолютной скорости иона к сумме абсолютных скоростей обоих ионов или соответственно через отношение ион­ных электропроводностей, например:

t - = --- = ---

v + + v _  + + _

Подставляем известные данные в формулу:

76,35 см 2 /Ом*моль

t - =  = 0, 60

76,35 см 2 /Ом*моль + 50,1 см 2 /Ом* моль

2. Подвижность ионов

Свяжем электропроводность электролита со скоростью движе­ния его ионов в электрическом поле. Для вычисления электропро­водности достаточно подсчитать число ионов, проходящих через любое поперечное сечение электролитического сосуда в единицу времени при стандартных условиях, т. е. при напряженности поля, равной 1 в/см. Так как электричество переносится ионами различ­ных знаков, движущимися в противоположных направлениях, то общее количество электричества, проходящее через раствор в 1 сек, т. е. сила тока I, складывается из количеств электричества, перенесенных соответственно катионами I + и анионами I - :

Обозначим скорость движения катионов через и" (в см/сек), ско­рость движения анионов через v" (в см/сек), эквивалентную кон­центрацию ионов через сi (в г-экв/см3), поперечное сечение ци­линдрического сосуда через q (в см), расстояние между электро­дами через l (в см) и разность потенциалов между электродами через Е (в В). Подсчитаем количество катионов, проходящих че­рез поперечное сечение электролита в 1 сек. За это время в одну сторону через сечение пройдут все катионы, находившиеся в на­чальный момент на расстоянии не более чем и" см от выбранного сечения, т. е. все катионы в объеме u"q. Количество катионов n+, прошедших через поперечное сечение в 1 сек:

Так как каждый грамм-эквивалент ионов несет согласно закону Фарадея F = 96485 K электричества, то сила тока (в а):

I+ = n+ F = u"qc+F

Для анионов, скорость движения которых равна v", рассуждая таким же образом, получим

Для суммарной силы тока (эквивалентные концентрации ионов одинаковы, т. е. c+ = c- = ci):

I = I++ I-= (и" + v") qciF (24)

Скорости движения ионов и" и V" зависят от природы ионов, на­пряженности поля E/l, концентрации, температуры, вязкости среды и т. д.

Пусть все факторы, кроме напряженности поля, постоянны, а скорость движения ионов в жидкости постоянна во времени при постоянной приложенной силе, если среда, в которой они дви­жутся, обладает достаточной вязкостью. Следовательно, можно считать, что скорость ионов пропорциональна приложенной силе, т. е. напряженности поля:

и" = u ; v" = v (25)

где и и v-коэффициенты пропорциональности, которые равны скоростям ионов при напряженности поля, равной 1 в/см.

Величины и и v называются абсолютными подвижностями ионов. Они измеряются в см2/(сек·в).

Подставив выражение (25) в уравнение (24), полу­чим

По закону Ома

Подставляем в уравнение (27) значения К и, приравняв правые части уравнении (26) и (27) будем иметь:

Решив уравнение (28) относительно λ, получим

Для сильных электролитов, диссоциацию которых считают полной, отношение 1000 сi/с = 1; для слабых электролитов 1000 сi/с = α. Введем новые обозначения:

U = uF; V=vF (30)

и назовем величины U и V подвижностямиионов. Тогда для сильных электролитов

а для слабых электролитов

λ = (U + V)α (32)

При бесконечном разведении (т. е. при φ → ∞, U → U∞, V→ V∞ и α → 1) получим

λ∞ = U∞ + V∞ (33)

как для сильных, так и для слабых электролитов. Величины U∞ и V∞, очевидно, являются предельными подвижностями ионов. Они равны эквивалентным электропроводностям катиона и ани­она в отдельности при бесконечном разведении и измеряются в тех же единицах, что λ или λ∞ т. е. в см2/ (ом г-экв). Уравнение (33) является выражением закона К.ольрауша: эквива­лентная электропроводность при бесконечном раз­ведении равна сумме предельных подвижностей ионов.

Подвижности U и V в уравнении (32) зависят от концен­трации (разведения), особенно для сильных электролитов, где при больших концентрациях значения U и V меньше, чем U∞ и V∞ , вследствие возрастающей взаимной связанности ионов разных знаков (влияние ионной атмосферы). То же имеет значение и для слабых электролитов, но в меньшей степени, так как там концен­трация ионов мала.

Нужно помнить, что величины U и V (а следовательно, и U∞ и V∞) относятся к 1 г - экв данных ионов.

Подвижность является важнейшей характеристикой ионов, от­ражающей их специфическое участие в электропроводности элек­тролита.

В водных растворах все ионы, за исключением ионов H3О+ и ОН-, обладает подвижностями одного порядка. Это значит, что абсолютные подвижности ионов (и и v)-также величины одного порядка, равные нескольким сантиметрам в час (K+-2,5; ОН-- 4,16; H3О+ - 10 см/ч).

Если ионы окрашены, то их перемещение при известных усло­виях можно измерить непосредственно и, таким образом, опреде­лить абсолютные подвижности.

Пользуясь таблицей предельных подвижностей ионов и законом Кольрауша, можно легко вычислить предель­ную электропроводность соответствующих растворов.

Эквивалентная электропроводность растворов солей выражается величинами порядка 100-130 см2/(г-экв ом). Ввиду исключи­тельно большой подвижности иона гидроксония величины λ∞ для кислот в 3-4 раза больше, чем λ∞ для солей. Щелочи занимают промежуточное положение.

Движение иона можно уподобить движению макроскопиче­ского шарика в вязкой среде и применить в этом случае формулу Стокса:

где е-заряд электрона; z-число элементарных зарядов иона; r-эффектив­ный радиус иона; η - коэффициент вязкости; Е/1 - напряженность поля.

Движущую силу - напряженность поля Е/1 при вычислении аб­солютных подвижностей принимаем равной единице. Следова­тельно, скорость движения ионов обратно пропорциональна их радиусу. Рассмотрим ряд Li+, Na+, К+. Так как в указанном ряду истинные радиусы ионов увеличиваются, то подвижности должны уменьшаться в тон же последовательности. Однако в действитель­ности это не так. Подвижности увели­чиваются при переходе от Li+ к К+ почти в два раза. Из этого можно сделать заключение, что в растворе и в ионной решетке ионы обладают разными радиусами. При этом чем меньше ис­тинный («кристаллохимический») радиус иона, тем больше его эффективный радиус в электролите. Это явление можно объяснить тем, что в растворе ионы не свободны, а гидратированы или (в об­щем случае) сольватированы. Тогда эффективный радиус движу­щегося в электрическом поле иона будет определяться в основном степенью его гидратации, т. е. количеством связанных с ионом мо­лекул воды.

Связь иона с молекулами растворителя, в частности с молеку­лами воды, ионно-дипольная, а так как напряженность поля на поверхности иона лития гораздо больше, чем на поверхности иона калия (ибо поверхность первого меньше поверхности второго, а радиус, т. е. расстояние диполей воды от эффективного точеч­ного заряда в центре иона, меньше), то степень гидратации иона лития больше степени гидратации иона калия. Согласно формуле Стокса многозарядные ионы должны обладать большей подвиж­ностью, чем однозарядные. Скорости движения многозарядных ионов мало отличаются от скоростей движения однозарядных, что, очевидно, объясняется большей сте­пенью их гидратации вследствие большей напряженности поля, создаваемого многозарядными ионами.

Все ткани организма пропитаны и омываются биологическими жидкостями, в которых растворены сильные и слабые электролиты. Поэтому такие биологические жидкости как кровь, лимфа, спинномозговая жидкость, слезная жидкость, слюна и т. д. относятся к проводникам второго рода.

Абсолютная скорость движения ионов. В растворах электролитов сольватированные ионы находятся в беспорядочном движении. При наложении электрического поля возникает упорядоченное движение ионов к противоположно заряженным электродам.

Сравнение скоростей движения различных видов ионов производят при градиенте потенциала поля 1 В/м. Для этих условий скорость движения ионов называют абсолютной, обозначают буквой w и выражают в м2 × B–1 × c–1. Абсолютная скорость движения иона –– это расстояние в метрах, которое проходит ион за 1 с при градиенте потенциала 1В/м. Численные значения абсолютных скоростей движения ионов в данном растворителе зависят только от их природы и температуры.

Для оценки способности ионов к перемещению под действием внешнего поля пользуются также количественной характеристикой – подвижность ионов (U). Подвижность иона представляет собой произведение числа Фарадея (F = 96465 B × с × См × моль–1) на абсолютную скорость движения иона и выражается в См × м2 × моль–1:

U = F × w (1)

Значения абсолютных скоростей движения и подвижностей ионов при 250С представлены в таблице 1:

Таблица 1

Катион

м2 × B–1 × c–1

См × м2 × моль–1

Анион

м2 × B–1 × c–1

См × м2 × моль–1

36,3 × 10–8

349,9 × 10–4

OH–

20,6 × 10–8

199,2 × 10–4

4,0 × 10–8

38,7 × 10–4

F–

5,7 × 10–8

55,4 × 10–4

5,2 × 10–8

50,3 × 10–4

Cl–

7,9 × 10–8

76,3 × 10–4

7,6 × 10–8

73,5 × 10–4

Br–

8,1 × 10–8

78,4 × 10–4

8,0 × 10–8

77,5 × 10–4

I–

8,0 × 10–8

76,9 × 10–4

8,0 × 10–8

77,5 × 10–4

7,4 × 10–8

71,5 × 10–4

7,6 × 10–8

73,5 × 10–4

CH3COO–

4,2 × 10–8

40,9 × 10–4

Mg2+

5,5 × 10–8

106,1 × 10–4

7,2 × 10–8

138,6 × 10–4

Al3+

6,5 × 10–8

183,2 × 10–4

8,3 × 10–8

159,6 × 10–4

Из приведенных в табл.1 данных можно усмотреть некоторые закономерности. Во-первых, абсолютная скорость движения катионов растет в пределах одной группы периодической системы элементов с ростом порядкового номера, как это видно из данных для катионов щелочных металлов. Сравнение расположенных в одном периоде и имеющих приблизительно одинаковый размер ионов Na+, Mg2+, Al3+ показывает незначительное увеличение абсолютной скорости движения с увеличением заряда иона. Оба эти факта объясняются явлением сольватации ионов в растворе. Молекулы растворителя группируются вокруг иона и увеличивают его эффективный радиус (который называется гидродинамическим радиусом).

В электрическом поле в растворах электролитов перемещается не свободный ион, а ион с плотно связанной с ним сольватной оболочкой. В силу меньшего размера ион Li+ сильнее притягивает диполи воды и в итоге имеет большую сольватную оболочку, чем ион калия. Следовательно, небольшие ионы имеют больший гидродинамический радиус и характеризуются меньшей абсолютной скоростью движения. Этим же объясняется малое отличие в абсолютной скорости движения ионов Na+, Mg2+, Al3+. С увеличением заряда, естественно, резко возрастает сольватная оболочка и тем самым размер перемещающейся частицы. Это увеличение размера почти полностью компенсирует эффект увеличения заряда.

Обращает также на себя внимание аномально высокая абсолютная скорость движения ионов гидроксония H 3 O + (H + ) и гидроксила OH – . Можно предположить, что ион Н+ должен быть сильно сольватирован, тем не менее он способен быстро передвигаться в растворе. В этом случае нельзя применить гидродинамический довод, поскольку действует так называемый «эстафетный механизм» перемещения ионов гидроксония и гироксила. В цепочке, построенной из молекул воды, заряд может перейти от одного конца цепочки к другому в результате сравнительно небольшого перемещения протонов, образующих водородные связи между молекулами воды, например:

Из приведенной схемы видно, что перемещение электрического заряда происходит без перемещения атомов водорода. Иными словами, вместо одного иона Н+, двигающегося в растворе, существует эффективное движение иона Н+ , включающее образование и разрыв связей вдоль длинной цепочки молекул воды. Аналогичную схему легко изобразить и для перемещения гидроксид-иона.

font-size:13.0pt;line-height:150%">Повышение температуры влияет на абсолютную скорость движения ионов путем дегидратации и уменьшения вязкости среды, что способствует увеличению скорости перемещения ионов.

Удельная электрическая проводимость

Электрическая проводимость (L) –– это способность веществ проводить электрический ток под действием электрического поля. Она представляет собой величину обратную электрическому сопротивлению R:

L = (2)

Единицей электрической проводимости в CИ является сименс (См), и 1 См = 1 Ом–1.

Известно, что R = r https://pandia.ru/text/79/437/images/image007_146.gif" width="20 height=41" height="41">.gif" width="16 height=44" height="44">= æ , то:

L == æ × , (3)

где æ (каппа) – удельная электрическая проводимость (См/м), S – площадь плоских электродов (м2), между которыми заключен раствор,ℓ – расстояние между электродами (м).

Удельной электрической проводимостью называется электрическая проводимость 1м3 раствора, находящегося в однородном электрическом поле при напряженности 1 В/м. Единицей удельной проводимости в CИ служит сименс/метр (См/м). Удельная электрическая проводимость зависит от многих факторов и, прежде всего, от природы электролита, его концентрации и температуры. Изотермы удельной электрической проводимости (рис.1) дают представление о характере зависимости удельной электрической проводимости от природы электролита и его концентрации для 250С (298К). Анализ изотермы позволяет сделать следующие выводы:

1. Удельная электрическая проводимость максимальна для растворов сильных кислот и несколько меньше – сильных оснований, что объясняется полной диссоциацией этих электролитов и высокой подвижностью ионов Н3О+ и ОН–.

2. Наименьшие значения во всем диапазоне концентраций имеет удельная электрическая проводимость растворов слабых электролитов (СН3СООН) в связи с низкой концентрацией ионов (a <<1).

3. Удельная электрическая проводимость растет с увеличением концентрацией до некоторых максимальных значений, что отвечает увеличению количества ионов в единице объема раствора. Достигнув максимума, удельная электрическая проводимость начинает уменьшаться, несмотря на рост концентрации электролита. Подобный характер зависимости æ от С связан у сильных электролитов с уменьшением подвижности ионов из-за возрастающего по мере увеличения концентрации раствора межионного взаимодействия, а у слабых электролитов – с уменьшением степени электролитической диссоциации электролита, а значит, и уменьшением количества ионов в единице объема раствора.

С увеличением температуры удельная электрическая проводимость растет. Это обусловлено, в основном, дегидратацией ионов и уменьшением вязкости среды, т. е. уменьшением сопротивления движению ионов.

Удельная электрическая проводимость растворов зависит от разведения. Разведение величина обратная концентрации. (Разведение обозначается символом V или 1/С и характеризует объем раствора, содержащий 1 моль электролита). Когда разведение мало – раствор концентрирован и степень диссоциации слабого электролита мала. С ростом разведения a сначала увеличивается, а, следовательно, и увеличивается удельная электрическая проводимость. При дальнейшем увеличении разведения степень диссоциации приближается к единице и перестает расти, в то время как общее количество электролита в единице объема уменьшается, что вызовет падение электрической проводимости.

Удельная электрическая проводимость может быть вычислена теоретически:

æ = F × C × a × (w А + w K ) – для слабых электролитов (4)

æ = F × C × fa × (w А + w K ) –для сильных электролитов (5)

где F – число Фарадея, С – концентрация электролита (моль/м3), a – степень диссоциации слабого электролита, fa – коэффициент активности сильного электролита, w А и w K – абсолютная скорость движения аниона и катиона в м/сек при градиенте потенциала 1 В/м.

Молярная электрическая проводимость.

Молярная электрическая проводимость – электрическая проводимость 1 моль электролита, находящегося в растворе между параллельными электродами с расстоянием между ними 1 м и градиенте потенциала 1В/м. Между удельной электрической проводимостью и молярной электрической проводимостью (λm) существует зависимость:

λm = æ/C, (6)

где λm (лямда) – молярная электрическая проводимость, См × м2 × моль–1, æ – удельная электрическая проводимость, См × м–1; С – концентрация электролита в растворе, моль/м3.

Обычно молярная концентрация характеризуется количеством вещества в 1 дм3 (1л), а не в 1м3. В этом случае соотношение имеет вид:

В бесконечно разбавленных растворах эквивалентная электро­проводность достигает предела и от концентрации больше не зависит, так как в растворах слабых электролитов наступает полная диссоциация (α = 1), а в растворах сильных электролитов межионное взаимодействие исчезает.

Эквивалентная электропроводность бесконечно разбавленных растворов называется электропроводностью при бесконечном разведении и обозначается l ∞ (или l 0).

Эквивалентная электропроводность при бесконечном разведении, согласно закону независимого движения ионов Кольрауша, равна сумме предельных подвижностей ионов

Подвижность связана с абсолютной скоростью движения ионов n:

l + =n + F, l - =n - F, =F, =F

где F – число Фарадея, 96487 к. ≈ 96500к.

Под абсолютной скоростью движения иона v, понимают скорость перемещения его в электрическом поле с градиентом потенциала 1 в/см. Размерность n см 2 сек -1 – в -1 . Величина абсолютной скорости движения иона при прочих равных условиях (температура, вязкость среды, градиент поля) зависит от концентрации раствора и достигает предельного значения в бесконечно разбавленных растворах, т. е. при φ→∞, n + → , n - → .Taк как скорость движения ионов очень мала, то используют величины в F раз большие - подвижности l + и l - .

Подвижность также называется эквивалентной электропроводностью ионов. Она измеряется в тех же единицах, что и эквивалентная электропроводность электролита (Ом -1 см 2 -г-экв -1). Подвижности ионов зависят от концентрации, особенно в растворах сильных электролитов, в которых межионное взаимодействие велико (f l < 1). Предельные подвижности ионов и достигаются при бесконечном разведении (φ→∞,f l →1), их значения приводятся в справочной литературе.

Зависимость эквивалентной электропроводности от степени дис­социации и межионного взаимодействия описывается уравнением:

В растворах слабых электролитов число ионов, участвующих в переносе электричества, определяется степенью диссоциации a. В концентрированных растворах слабых электролитов α весьма мала, поэтому и число ионов в растворе также мало и практически отсутствует межионное взаимодействие. При сильном разбавлении растворов α возрастает и увеличивается число
ионов в растворе, однако межионные расстояния так велики, что взаимодействие ионов также отсутствует (f l = 1). Таким образом, в растворах слабых электролитов при любых разведениях ионы обладают предельной подвижностью и и эквивалентная электропроводность зависит только от степени диссоциации



Следовательно, отношение электропроводностей будет отвечать степени диссоциации слабых электролитов

Это уравнение называют формулой Аррениуса, на практике его используют для определения степени диссоциации растворов электролитов.

Для 1–1–валентного слабого электролита, диссоциирующего по схеме АВ↔А+ В – , используя закон разведения Оствальда и учитывая, что можно определить константу диссоциации через эквивалентную электропроводность по формуле:

(10.8)

где С – концентрация электролита, моль/л.

Согласно теории Дебая-Хюккеля, сильные электролиты в растворах полностью диссоциированы на ионы (α =1) и межионные взаимодействия велики (f l < 1), значит уравнение (10.6) должно быть записано в виде

откуда коэффициент электропроводности равен

;

Коэффициент электропроводности является функцией концентрации, экспериментально его определяют исходя из эквивалентной электропроводности раствора. Величина зависит от валентности ионов: 1–1–валентного электролита (типа NaCI, HCI) в 0,1 н. растворе 0,8; для 1–2–валентных (Na 2 SО 4 , СаСI 2) f x ~ 0,75; 2–2–валентных (CuSО 4) ~ 0,4. При разбавлении растворов уменьшается межионное взаимодействие, и эти различия сглаживаются: эквивалентная электропроводность достигает предела и

10.4 Механизм влияния ионов атмосферы на электропроводность
растворов, закон квадратного корня Кольрауша.

Качественно механизм влияния ионной атмосферы на электропроводность состоит в следующем: центральный ион, например катион, при наложении постоянного электрического поля движется к катоду, противоположно заряженная ионная атмосфера перемещается к аноду. Это вызывает так называемое электрофоретическое торможение.

Окружающая центральный ион атмосфера должна исчезать позади иона, движущегося в электрическом поле, и вновь образовываться впереди него. Оба процесса разрушения и образования ионной атмосферы происходят не мгновенно, например в 0,1 н растворе хлористого калия за 0,6·10 -9 сек, а в 0,001 н растворе – за 0,6·10 -7 сек. Это вызывает релаксационное торможение. Поэтому коэффициент электропроводности принимает значения меньше единицы не в результате неполной диссоциации, а за счет проявления этих торможений.

Кроме электрофоретического и релаксационного торможения, существует третья сила, тормозящая движение ионов в растворе. Это сила трения, зависящая от вязкости растворителя, в котором движется ион. Поэтому повышение температуры вызывает увеличение скорости движения ионов, и как следствие возрастание электропроводности.

Для разбавленных растворов сильных электролитов теория дает линейную зависимость эквивалентной электропроводности от корня квадратного из концентрации (закон квадратного корня Кольрауша)

(10.9)

Постоянная А, зависящая от природы растворителя, температуры и валентного типа электролита, экспериментально определяется тангенсом угла наклона прямой к оси абсцисс (рис. 10.2).

Предельную эквивалентную электропроводность сильных электролитов можно найти экстраполяцией опытных данныхдо значения С = 0. Необходимо подчеркнуть, что, хотя предельную электропроводность понимают как проводимость при концентрации электролита, близкой к нулю, она никоим образом не идентична эквивалентной электропроводности растворителя.

Рис. 10.2 Зависимость эквивалентной электропроводности от корня квадратного из концентрации для сильных электролитов (НСI, КОН, LiCI) , и слабого электролита (СН 3 СООН) в водных растворах.

Для растворов слабых электролитов зависимость эквивалентной
электропроводности от концентрации вытекает из закона разбавления Оствальда. При α1 получаем

(10.10)

откуда

или в логарифмическом виде

Эта зависимость не является линейной, поэтому значение, не­возможно определить экстраполяцией, его определяют только косвенным путем исходя из закона независимого движения ионов Кольрауша.

Данные о подвижности ионов показывают, что радиусы ионов в кристаллической решетке не сохраняются в растворах. Например, радиусы
ионов щелочных металлов по ряду Li + возрастают, однако в растворе наблюдается обратный порядок. Ион Li + имеет более сильное электрическое поле, так как его удельный заряд (отношение величины заряда частицы к ее массе) больше, чем других щелочных ионов, поэтому в растворе он гидратируется сильнее. Сильно гидратированный ион Li + движется между молекулами воды в электрическом поле гораздо медленнее, чем менее гидратированпый ион Cs + (например,= 38,6; = 77,2 ом -1 см 2 г-экв -1).

С увеличением заряда ионов скорость перемещения его в элек­трическом поле, а, следовательно, и электропроводность раствора возрастают. Однако самыми большими скоростями обладают ионы Н+ (точнее ионы гидроксония) и ОН - . Только их подвижности выражаются трехзначными числами (= 349,8; =198,3 ом -1 -см 2 -экв -1). Это, по-видимому, объясняется тем, что протон может переносится от молекулы к молекуле воды по так называемому «эстафетному» механизму

анод (+) | Н 3 O + Н 2 O| катод (–).

В результате такого перескока протон проходит 0,86 А, что отвечает перемещению катиона гидроксония на 3,1 Ǻ, или перенос гидроксила в электрическом поле к аноду

анод (+) | Н 2 O ОН – | катод (–),

при котором перескок протона вправо имеет следствием перемещение гидроксила влево. При этом гидроксил, принимающий протон, превращается в молекулу воды, а вместо него возникает новый анион, находящийся к аноду ближе, чем тот, который исчезает вследствие присоединения протона. Естественно, что при таком механизме проводимости подвижность ионов водорода и гидроксила значительно больше, чем ионов, которые просто дви­гаются в электрическом поле.