Функции принадлежности.

Определение

Под нечётким множеством понимается совокупность , где X - универсальное множество, а - функция принадлежности (характеристическая функция), характеризующая степень принадлежности элемента X нечёткому множеству A.

Функция принимает значения в некотором линейно упорядоченном множестве М. Множество М называют множеством принадлежностей, часто в качестве выбирается отрезок {0,1}. Если, то нечёткое множество может рассматриваться как обычное, чёткое множество. M={0,1}.

Примеры записи нечеткого множества

Пусть E = {x1, x2, x3, x4, x5 }, M = ; A - нечеткое множество, для которого

Тогда A можно представить в виде:

A = {0,3/x1; 0/x2; 1/x3; 0,5/x4; 0,9/x5 } или

A = 0,3/x1 + 0/x2 + 1/x3 + 0,5/x4 + 0,9/x5, или

А= x1x2x3x4x5
0,3 0 1 0,5 0,9

Замечание . Здесь знак "+" не является обозначением операции

сложения, а имеет смысл объединения.

Характеристическая функция обычного множества - это функция, устанавливающая принадлежность элемента к множеству. Особенность: носит бинарный характер.

f(x)={1, x принадлежит М; 0, x не принадлежит М.

Функция принадлежности - функция, которая позволяет вычислить степень принадлежности производного элемента универсального множества к нечеткому множеству.

Степень принадлежности - это любое число из диапазона Z (например, Z=).

Чем выше степень принадлежности, тем в большей мере элемент универсального множества соответствует свойствам нечеткого множества.

Множество Z называют множеством принадлежностей. Если Z={0,1}, то нечеткое множество F может рассматриваться как обычное (четкое) множество.

2. Какие нечеткие числа называют нормальными, унимодальными и выпуклыми?

Носителем (суппортом) нечёткого множества называется множество

Supp(F)={x|f(x)>0}, для любого x принадлежащего Е.

Нечеткое множество называется пустым, если его носитель тоже пустое множество.

F=пустое множество <=> supp (F)=пустое множество, то есть f(x)=0 для любого x от Е.

Нечеткое множество является унимодальным , если mA(x)=1 лишь для одного x из E.

Элементы x из Е для которых f(x)=0,5 называются точками перехода множества F.

Высотой нечеткого множества F называется верхняя граница его функции принадлежности hgt (F) = sup x из E f(x).

Нечеткое множество F называется нормальным , если его высота равна единицы. В противном случае оно называется субнормальным.

Нормализация - это преображение субнормального нечеткого множества F в нормальное F определяется так:


F=norm (F) <=> f(x)=f(x)/hgt(F), для любого x из Е.

3. Дайте определение Нечеткие числа (L-R)-типа.

Нечеткие числа (L-R)-типа - это разновидность нечетких чисел специального вида, т.е. задаваемых по определенным правилам с целью снижения объема вычислений при операциях над ними.

Нечеткие числа и интервалы, которые наиболее часто используются для представления нечетких множеств в нечетком моделировании, являются нормальными. Однако данные выше определения нечеткого числа и нечеткого интервала слишком общие, что затрудняет их практическое использование. С вычислительной точки зрения удобно использовать более конкретные определения нечетких чисел и интервалов в форме аналитической аппроксима-ции с помощью так называемых (L-R )-функций. Получаемые в результате нечеткие числа и интервалы в форме (L-R) -функций позволяют охватить достаточно широкий класс конкрет-ных функций принадлежности. Определение 6.14. Функция L-muna (а также и R-muna), в общем случае определяется как произвольная функция L: R → и R: /R →, заданная на множестве действительных чисел, невозрастающая на подмножестве неотрицательных чисел R+ и удовлетворяющая следующим дополнительным условиям: L(-x)= L(x), R(-x)=R(x) - условие четности; (6.7) L (0)=R (0) = 1 -условие нормирования. (6.8) Примечание: Иногда в литературе можно встретить еще одно условие, которому долж-ны, по мнению некоторых авторов, удовлетворять функции (L-R )-типа: L (1) = R (1) = 0. По-скольку с одной стороны это условие существенно ограничивает класс функций (L-R )-типа, а с другой стороны, рассматриваемые ниже треугольные нечеткие числа и трапециевидные не-четкие интервалы согласуются с выполнением этого свойства, мы не будем его включать в определение функций (L-R )-типа.

1

Нечеткая логика – одно из интереснейших и активно развивающихся направлений теории искусственного интеллекта. Отличие теории нечетких множеств от классической теории четких множеств состоит в том, что если для четких множеств результатом вычисления функции принадлежности могут быть только два значения – ноль или единица, то для нечетких множеств это количество бесконечно, но ограничено диапазоном от нуля до единицы.В статье рассматриваются способы и примеры определения значений функции принадлежности, а именно частотный анализ, экспертный метод нормирования и метод попарных сравнений, L-R – функции. Рассмотренные методы просты в применении.Материалы данной статьи представляют методическую и практическую ценность для преподавателей и студентов, интересующихся вопросами нечеткого моделированияи анализа данных.

Ключевыеслова: нечеткая логика

функция принадлежности

1. Курзаева Л.В., Новикова Т.Б., Лактионова Ю.С., Петеляк В.Е. Применение метода попарных сравнений для определения функции принадлежности нечеткой переменной в задачах управления социально-экономическими системами // Научно-практический журнал «Заметки ученого». - 2015 - №5. - С.87-90

2. Курзаева Л.В. Нечеткая логика и нейронные сети. – Магнитогорск: Изд-во Магнитогорск, гос.тех. ун-та им. Г.И.Носова, 2016.

4. Курзаева Л.В. Введение в теорию систем и системный анализ: учеб. пособие/Л.В. Курзаева. -Магнитогорск: МаГУ, 2015. -211 с.

5. Курзаева Л.В. Введение в методы и средства получения и обработки информации для задач управления социальными и экономическими системами: учеб. пособие / Л.В. Курзаева, И.Г. Овчинникова, Г.Н. Чусавитина. -Магнитогорск: Магнитогорск. гос. техн. ун-та им. Г.И. Носова, 2016. -118 с.

Все методы определения значений функций принадлежности условно можно разделить на следующие группы: прямые методы, косвенные методы, L-R & dash; функции.

К первой группе методов можно отнести частотный анализ по результатам опросов экспертов.

Пример. По результатам опросов респондентов по прогнозам цены литра молока в 2016 г. получены следующие результаты (табл.1).

Ко второй группе методов можно отнести экспертные методы (например, анкетный метод нормирования, а также метод попарных сравнений).

Метод нормирования, заключается в следующем. Эксперту предлагается оценить степень принадлежности к множеству А каждого элемента из Ux1 & dash; х, соотнеся свое мнение со значениями по некоторой, заранее выбранной шкале (например, от 0 до 100%, или относительных величинах от 0 до 1, или любой другой).

Результаты опроса нескольких экспертов сводятся в матрицу опроса (табл. 2).

Затем производятся следующая последовательность действий:

Таблица 1

Данные по опросу экспертов о прогнозируемой цене на молоко в 2016 г

Матрица опроса нескольких экспертов

Пример. В табл. 3 приведены результаты опроса четырех экспертов о степени принадлежности трех элементов & dash; автомобилей «Chevrolet iva», «JeepGra dCherokee», «CheryTiggo F» множеству «Внедорожники», оцененные по 100 бальной шкале.

Таблица 3

Матрица опроса

Рассчитывается сумма весов, даваемых i-м экспертом всем элементам:

Таблица 4

Рассчитывается относительный вес j-го элемента на основании оценки i-го эксперта:

Таблица 5

Матрица опроса с элементами расчетов

Рассчитывается результирующий вес j-го элемента:

Таблица 6

Итак, согласно собранным данным и методу расчета множестово«Внедорожники» ={0,43/ «JeepGra dCherokee»; 0,29/ «Chevrolet iva»; 0,28/ «CheryTiggo F»}

Метод попарных сравнений, заключается в том, что только один эксперт на основе своего субъективного мнения оценивает принадлежность элемента данному множеству относительно другого элемента. Для проведения субъективных парных сравнений Т. Саати была разработана шкала относительной важности, ее модификация приведена в табл. 7:

Таблица 7

Матрица опроса с элементами расчетов и результатами

Результаты попарного сравнения элементов заносятся в матрицу сравнения размерности n×n, где n число сравниваемых элементов. Элемент указанной матрицы выражает результат сравнения элементов i и j. Если при сравнении элементов i и j получено a(i,j)=b, то результатом сравнения элементов jи iдолжно быть a(j,i)=1/b. Очевидно, что диагональные элементы матрицы равны 1.

Т. Саати предложил упрощенную процедуру вычисления вектора w. Пусть v& dash; вектор геометрических средних строк некоторой матрицы сравнения:

Тогда вектор wбудет определяться следующим образом:

Пример. По результатам оценки эксперта степени принадлежности трех элементов & dash; значений температур в градусах Цельсия определить множество «Холодно».

Соответствующие матрицам сравнения векторы локальных приоритетов находятся следующим образом:

Рис. 1. Примеры L-R -функций

Итак, по данным расчетов «Холодно»={0,747/ -25; 0,134/ -10; 0,119/-5}.

Третью группу составляют способы на основе использования так называемые L-R & dash; функций (типовых форм кривых рис. 1) для задания функций принадлежности с уточнением их параметров путем приближения к реальным данным.

Пример. Если мы оцениваем параметр качественно, например, говоря: «Это значение параметра является средним», необходимо ввести уточняющее высказывание типа « Среднее значение — это примерно от a до b», которое есть предмет экспертной оценки (нечеткой классификации), и тогда можно использовать для моделирования трапециевидную функцию.

Если мы хотим выразить «приблизительно равно α», то можно использовать треугольные функции.

Библиографическая ссылка

Курзаева Л.В. МЕТОДЫ ОПРЕДЕЛЕНИЯ ЗНАЧЕНИЙ ФУНКЦИЙ ПРИНАДЛЕЖНОСТИ НЕЧЕТКОГО МНОЖЕСТВА // Международный журнал прикладных и фундаментальных исследований. – 2016. – № 12-6. – С. 1047-1051;
URL: https://applied-research.ru/ru/article/view?id=10983 (дата обращения: 06.04.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Функция принадлежности μ A (x) ∈ ставит в соответствие каждому числу

x ∈ X число из интервала , характеризующее степень принадлежности решения к подмножеству А.

Т.е. это некоторая не вероятностная субъективная мера нечеткости, определяемая в результате опроса экспертов о степени соответствия элемента x понятию, формализуемому нечетким множеством A. В отличие от вероятностной меры, которая является оценкой стохастической неопределенности, имеющей дело с неоднозначностью наступления некоторого события в различные моменты времени, нечеткая мера является численной оценкой лингвистической неопределенности, связанной с неоднозначностью и расплывчатостью категорий человеческого мышления. При построении функции принадлежности μ A (x) с каждым нечетким множеством A ассоциируется некоторое свойство, признак или атрибут, который характеризует некоторую совокупность объектов X. Чем в большей степени конкретный объект x ∈ X обладает этим свойством, тем более близко к 1 соответствующее значение μ A (x). Если элемент x ∈ X определенно обладает этим свойством, то μ A (x)=1, если же x ∈ X определенно не обладает этим свойством, то μ A (x)=0.

Основные виды функций принадлежности

На практике удобно использовать те функции принадлежности, которые допускают аналитическое представление в виде некоторой простой математической функции.

1. Кусочно-линейные,

использующиеся для задания неопределенностей типа: «приблизительно равно», «среднее значение», «расположен в интервале», «подобен объекту», «похож на предмет» и т.п.

Треугольная trimf

Трапецеидальная trapmf

2. S-образные,

использующиеся для задания неопределенностей типа: «большое количество», «большое значение», «значительная величина», «высокий уровень» и т.п.

Квадратичный S-сплайн smf

3. Z -образные,

использующиеся для задания неопределенностей типа «малое количество», «небольшое значении е», «незначительная величина», «низкий уровень» и т.п.

Квадратичный Z -сплайн z mf

4. П-образные,

использующиеся для задания неопределенностей типа: «приблизительно в пределах от и до», «примерно равно», «около» и т.п.

К данному типу функций принадлежности можно отнести целый класс кривых, которые по своей форме напоминают колокол, сглаженную трапецию или букву "П".

Колоколообразная gbellmf

a - коэффициент концентрации функции принадлежности; b – коэффициент крутизны функции принадлежности; c – координата максимума функции принадлежности.

Гауссовская gaussmf

a – координата максимума функции принадлежности; b – коэффициент концентрации функции принадлежности.

Методы построения функций принадлежности

Прямые и косвенные

В зависимости от числа привлеченных к опросу экспертов как прямые, так и косвенные методы делятся на одиночные и групповые .

Прямые

В прямых методах эксперт либо группа экспертов просто задают для каждого

x ∈ X значение функции принадлежности μ A (x).

Как правило, прямые методы построения функций принадлежности используются для таких свойств, которые могут быть измерены в некоторой количественной шкале. Например, такие физические величины, как скорость, время, расстояние, давление, температура и другие имеют соответствующие единицы и эталоны для своего измерения.

При прямом построении функций принадлежности следует учитывать, что теория нечетких множеств не требует абсолютно точного задания функций принадлежности. Зачастую бывает достаточно зафиксировать лишь наиболее характерные значения и вид функции принадлежности.

Так, например, если необходимо построить нечеткое множество, которое представляет свойство "скорость движения автомобиля примерно 50 км/ч", на начальном этапе может оказаться достаточным представить соответствующее нечеткое множество треугольной функцией принадлежности с параметрами а = 40 км/ч, b = 60 км/ч и с = 50 км/ч. В последующем функция принадлежности может быть уточнена опытным путем на основе анализа результатов решения конкретных задач.

Процесс построения или задания нечеткого множества на основе некоторого известного заранее количественного значения измеримого признака получил даже специальное название - фаззификация или приведение к нечеткости. Речь идет о том, что хотя иногда нам бывает известно некоторое значение измеримой величины, мы признаем тот факт, что это значение известно неточно, возможно с погрешностью или случайной ошибкой. При этом, чем меньше мы уверены в точности измерения признака, тем большим будет интервал носителя соответствующего нечеткого множества. Следует помнить, что в большинстве практических случаев абсолютная точность измерения является лишь удобной абстракцией для построения математических моделей. Именно по этой причине фаззификация позволяет более адекватно представить объективно присутствующую неточность результатов физических измерений.

Метод относительных частот (прямой групповой)

Пусть имеется m экспертов, n 1 из которых на вопрос о принадлежности элемента x ∈ X нечеткому множеству A отвечают положительно. Другая часть экспертов n 2 = m n 1 отвечает на этот вопрос отрицательно. Тогда принимается μ A (x) = n 1 / (n 1 + n 2) = n 1 / m.

Пример. Рассмотрим нечеткое множество A, соответствующее понятию «скорость изменения температуры положительная средняя». Объект x – скорость изменения температуры. Экспертам предъявляются различные значения скорости изменения температуры x, и каждому из них задается вопрос: считает ли эксперт, что данная скорость изменения температуры x положительная средняя. Результаты опроса сведены в табл.

В качестве непрерывного представления данной нечеткой переменной можно использовать гауссовскую ФП gaussmf с максимумом функции принадлежности а=5 и коэффициентом концентрации функции принадлежности b=1.7:

μ(x) = exp [ – (x–5) 2 / 2*1.7 2 ]

Косвенные

Используются при решении задач, для которых свойства физических величин не могут быть измерены. Наибольшее распространение среди косвенных методов получил метод парных сравнений.

Метод парных сравнений

Интенсивность принадлежности определяют, исходя из попарных сравнений рассматриваемых элементов.

Для каждой пары элементов универсального множества эксперт оценивает преимущество одного элемента над другим по отношению к свойству нечеткого множества. Парные сравнения удобно представлять следующей матрицей:

,

где - уровень преимущество элементанад(), определяемый по девятибальной шкале Саати:

1 - если отсутствует преимущество элемента над элементом;

3 - если имеется слабое преимущество над;

5 - если имеется существенное преимущество над;

7 - если имеется явное преимущество над;

9 - если имеется абсолютное преимущество над;

2, 4, 6, 8 - промежуточные сравнительные оценки.

Пример. Построить функцию принадлежности нечеткого множества "высокий мужчина" на универсальном множестве {170, 175, 180, 185, 190, 195}, если известны такие экспертные парные сравнения:

    абсолютное преимущество 195 над 170;

    явное преимущество 195 над 175;

    существенное преимущество 195 над 180;

    слабое преимущество 195 над 185;

    отсутствует преимущество 195 над 190.

Приведенным экспертным высказываниям соответствует такая матрица парных сравнений:

При согласованных мнениях эксперта матрица парных сравнений обладает следующими свойствами:

    она диагональная‚ т. е. a ii =1 ‚ i=1..n ;

    она обратно симметрична‚ т. е. элементы‚ симметричные относительно главной диагонали‚ связаны зависимостью a ij =1/a ji , i,j=1..n ;

    она транзитивна‚ т. е. a ik a kj =a ij , i,j,k=1..n .

Наличие этих свойств позволяет определить все элементы матрицы парных сравнений:

После определения всех элементов матрицы парных сравнений, степени принадлежности нечеткого множества вычисляются по формуле:

Для нормализации нечеткого множества разделим все степени принадлежности на максимальное значение, т.е. на 0.3588.

μ высокий мужчина (u i) (субнормальное нечеткое множество)

μ высокий мужчина (u i) ((нормальное нечеткое множество)

Классификация функций принадлежности нормальных нечеткихмножеств

Нечеткое множество называется нормальным, если для его функции принадлежности справедливоутверждение, что существует такой , при котором .

s

Функция принадлежности класса s определяется как:

Функция принадлежности класса π

Функция принадлежности класса π определяется через функцию класса s :

Функция принадлежности класса γ

Функция принадлежности класса γ определяется как:

Функция принадлежности класса t

Функция принадлежности класса t определяется как:

Функция принадлежности класса L

Функция принадлежности класса L определяется как:

Определим лингвистическую переменную (ЛП) как переменную, значение которой определяется набором словесных характеристик некоторого свойства. Например, ЛП "возраст" может иметь значения

ЛП = МлВ, ДВ, ОВ, ЮВ, МВ, ЗВ, ПВ, СВ,

обозначающие возраст младенческий, детский, отроческий, юношеский, молодой, зрелый, преклонный и старый, соответственно. Множество M - это шкала прожитых человеком лет . Функция принадлежности определяет, насколько мы уверены, что данное количество прожитых лет можно отнести к данному значению ЛП. Допустим, что неким экспертом к молодому возрасту отнесены люди в возрасте 20 лет со степенью уверенности 0,8, в возрасте 25 лет со степенью уверенности 0,95, в возрасте 30 лет со степенью уверенности 0,95 и в возрасте 35 лет со степенью уверенности 0,7. Итак:

μ(X 1)=0,8; μ(X 2)=0,95; μ(X 3)=0,95; μ(X 4)=0,7;

Значение ЛП=МВ можно записать:

МВ = μ(X 1) / X 1 + μ(X 2) / X 2 + μ(X 3) / X 3 + μ(X 4) / X 4 = = 0,8 / X 1 + 0,95 / X 2 + 0,95 / X 3 + 0,7 / X 4 .

Таким образом, нечеткие множества позволяют учитывать субъективные мнения отдельных экспертов. Для большей наглядности покажем множество МВ графически при помощи функции принадлежности (рис. 2.7).

Рис. 2.7. График функции принадлежности

Для операций с нечеткими множествами существуют различные операции, например, операция "нечеткое ИЛИ" (иначе) задается в логике Заде , :

μ(x)=max(μ 1 (x), μ 2 (x))

и при вероятностном подходе так:

μ(x)=μ 1 (x)+μ 2 (x)-μ 1 (x) · μ 2 (x).

Рассмотрим эти операции в виде диаграмм. В ранней статье о нечетких множествах Заде предложил оператор минимума для пересечения и оператор максимума для объединения двух нечетких множеств. Легко видеть, что эти операторы совпадают с четким объединением, и пересечением, если мы рассматриваем только принадлежность к 0 и 1.

Чтобы разъяснять это, рассмотрим несколько примеров. Допустим А есть нечеткий интервал между 5 и 8, а B - нечеткое число, приблизительно 4. Следующая диаграмма показывает нечеткое множество между 5 и 8 И (AND - пересечение) приблизительно 4 (синия линия).

Нечеткое множество между 5 и 8 ИЛИ (OR-объединение) приблизительно 4 показывается в следующей диаграмме (снова, синей линией).

Следующая диаграмма явкяется примером отрицания. Синяя линия - ОТРИЦАНИЕ нечеткого множества A.

Существуют и другие операции над нечеткими числами, такие как расширенные бинарные арифметические операции (сложение, умножение и пр.) для нечетких чисел, определяемые через соответствующие операции для четких чисел с использованием принципа обобщения и т.д.

Baldwin J.F.. Fuzzy logic and fuzzy reasoning. - London, Academic Press, 1981.

Для задания нечеткой истинности Балдвин предложил такие функции принадлежности нечетких "истинно" и "ложно".

Нечеткое множество (fuzzyset) представляет собой совокупность элементов произвольной природы, относительно которых нельзя точно утверждать – обладают ли эти элементы некоторым характеристическим свойством, которое используется для задания нечеткого множества.

Пусть X – универсальное (базовое) множество, x – элемент X , а R – некоторое свойство. Обычное (четкое) подмножество A универсального множества X , элементы которого удовлетворяют свойству R , определяется как множество упорядоченных пар
A = μ A x / x , где μ A x – характеристическая функция, принимающая значение 1 , если x удовлетворяет свойству R , и 0 – в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из X нет однозначного ответа «да-нет» относительно свойства R . В связи с этим, нечеткое подмножество A универсального множества X определяется как множество упорядоченных пар A = μ A x / x , где μ A x – характеристическая функция принадлежности (или просто функция принадлежности ), принимающая значения в некотором вполне упорядоченном множестве M = 0 ; 1 . Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A . Множество M называют множеством принадлежностей. Если M = 0 ; 1 , то нечеткое подмножество A может рассматриваться как обычное или четкое множество. Степень принадлежности μ A x является субъективной мерой того, насколько элемент x ∈ X , соответствует понятию, смысл которого формализуется нечетким множеством A .

Носителем нечеткого множества A является четкое подмножество S A универсального множества X со свойством μ A x > 0 , т.е. S A = x ∣ x ∈ X ∧ μ A x > 0 . Иными словами, носителем нечеткого множества A является подмножество S A универсального множества X , для элементов которого функция принадлежности μ A x > 0 больше нуля. Иногда носитель нечеткого множества обозначают support A .

Если носителем нечеткого множества A является дискретное подмножество S A , то нечеткое подмножество A универсального множества X , состоящего из n элементов, можно представить в виде объединения конечного числа одноточечных множеств μ A x / x при помощи символа ∑ : A = ∑ i = 1 n μ A x i / x i . При этом подразумевается, что элементы x i упорядочены по возрастанию в соответствии со своими индексами, т.е. x 1 < x 2 < x 3 < … < x n .

Если носителем нечеткого множества A является непрерывное подмножество S A , то нечеткое подмножество A универсального множества X , рассматривая символ ∫ как непрерывный аналог введенного выше символа объединения для дискретных нечетких множеств ∑ , можно представить в виде объединения бесконечного числа одноточечных множеств μ A x / x:

A = ∫ X μ A x / x .

Пример. Пусть универсальное множество X соответствует множеству возможных значений толщин изделия от 10 мм до 40 мм с дискретным шагом 1 мм. Нечеткое множество A , соответствующее нечеткому понятию «малая толщина изделия», может быть представлено в следующем виде:

A = 1 / 10 ; 0,9 / 11 ; 0,8 / 12 ; 0,7 / 13 ; 0,5 / 14 ; 0,3 / 15 ; 0,1 / 16 ; 0 / 17 ; … ; 0 / 40 ,

A = 1 / 10 + 0,9 / 11 + 0,8 / 12 + 0,7 / 13 + 0,5 / 14 + 0,3 / 15 + 0,1 / 16 + 0 / 17 + … + 0 / 40 ,

где знак суммирования обозначает не операцию арифметического сложения, а объединения элементов в одно множество. Носителем нечеткого множества A будет конечное подмножество (дискретный носитель):

S A = 10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 16 .

Если же универсальное множество X является множеством действительных чисел от 10 до 40 , т.е. толщина изделия может принимать все возможные значения в этих пределах, то носителем нечеткого множества A является отрезок S A = 10 ; 16 .

Нечеткое множество с дискретным носителем может быть представлено в виде отдельных точек на плоскости, нечеткое множество с непрерывным носителем может быть представлено в виде кривой, что соответствует дискретной и непрерывной функциям принадлежности μ A x , заданным на универсальном множестве X (рис.2.1).

Рис.2.1. Функции принадлежности нечетких множеств с (а)-дискретным и (б)-непрерывным носителями

Пример. Пусть X = 0 ; 1 ; 2 ; … – множество целых неотрицательных чисел. Нечеткое множество ital малый можно определить как μ ital малый x = x 1 + 0,1 x 2 − 1 .

Рис.2.2. Графическое представление нечеткого множества малый

Нечеткое множество A называется конечным , если его носитель S A является конечным четким множеством. При этом, по аналогии с обычными множествами, можно говорить, что такое нечеткое множество имеет конечную мощность card A = card S A . Нечеткое множество A называется бесконечным , если его носитель S A не является конечным четким множеством. При этом счетным нечетким множеством будет называться нечеткое множество с счетным носителем, имеющим счетную мощность в обычном смысле в терминах теории четких множеств, т.е. если S A содержит бесконечное число элементов, которые однако можно пронумеровать натуральными числами 1,2 ,3 . . . , причем достичь последнего элемента при нумерации принципиально невозможно. Несчетным нечетким множеством будет называться нечеткое множество со несчетным носителем, имеющим несчетную мощность континуума , т.е. если S A содержит бесконечное число элементов, которые невозможно пронумеровать натуральными числами 1,2 ,3 . . .

Пример. Нечеткое понятие «очень маленькое количество деталей» может быть представлено в виде конечного нечеткого множества A = 1 / 0 + 0,9 / 1 + 0,8 / 2 + 0,7 / 3 + 0,5 / 4 + 0,1 / 5 + 0 / 6 + … с мощностью card (A) = 6 и носителем S A = 0 ; 1 ; 2 ; 3 ; 4 ; 5 , который является конечным четким множеством. Нечеткое понятие «очень большое количество деталей» может быть представлено в виде A = 0 / 0 + … + 0,1 / 1 0 + 0,4 / 11 + 0,7 / 12 + 0,9 / 13 + 1 / 14 + 1 / 15 + … + 1 / n + … , n ∈ N – нечеткого множества с бесконечным счетным носителем S A ≡ N (множество натуральных чисел), который имеет счетную мощность в обычном смысле.

Пример. Несчетное нечеткое множество A , соответствующее нечеткому понятию «очень горячо», задано на универсальном множестве значений температур (в Кельвинах) температурой x ∈ [ 0 ; ∞) и функцией принадлежности μ A = 1 − e − x , с носителем S A ≡ R + (множество неотрицательных действительных чисел), который имеет несчетную мощность континуума.

Величина sup x ∈ X μ A x называется высотой нечеткого множества.

Нечеткое множество A нормально , если его высота равна 1 , т.е. верхняя граница его функции принадлежности sup x ∈ X μ A x = 1 . При sup x ∈ X μ A x < 1 субнормальным.

Нечеткое множество называется пустым , если ∀ x ∈ X μ A x = 0 .

Непустое субнормальное множество всегда можно нормализовать, разделив все значения функции принадлежности на ее максимальное значение μ A x sup x ∈ X μ A x .

Нечеткое множество называется унимодальным , если μ A x = 1 только для одной точки x (моды ) универсального множества X .

Нечеткое множество называется точечным , если μ A x > 0 только для одной точки x универсального множества X .

Множеством α -уровня нечеткого множества A , определенного на универсальном множества X , называется четкое подмножество A α универсального множества X , определяемое в виде:

A α = x ∈ X ∣ μ A x ≥ α , где α ∈ 0 ; 1 .

Пример. A = 0,8 / 1 + 0,6 / 2 + 0,2 / 3 + 1 / 4 , A 0,5 = 1 ; 2 ; 4 , где A 0,5 – четкое множество, включающее те элементы x упорядоченных пар μ A x / x , составляющих нечеткое множество A , для которых значение функции принадлежности которых удовлетворяет условию μ A x ≥ α .

Для множеств α -уровня выполняется следующее свойство: если α 1 ≥ α 2 , то мощность подмножества A α 1 не больше мощности подмножества A α 2 .

Элементы x ∈ X , для которых μ A x = 0,5 называются точками перехода нечеткого множества A .

Ядром нечеткого множества A , определенного на универсальном множестве X , называется четкое множество core A , элементы которого удовлетворяют условию core A = x ∈ X ∣ μ A x = 1 .

Границей нечеткого множества A , определенного на универсальном множестве X , называется четкое множество front A , элементы которого удовлетворяют условию front A = x ∈ X ∣ 0 < μ A x < 1 .

Пример. Пусть X = 0 ; 1 ; 2 ; … ; 10 , M = 0 ; 1 . Нечеткое множество несколько можно определить на универсальном множестве натуральных чисел следующим образом: несколько = 0,5 / 3 + 0,8 / 4 + 1 / 5 + 1 / 6 + 0,8 / 7 + 0,5 / 8 ; его характеристики: высота = 1 , носитель = 3 ; 4 ; 5 ; 6 ; 7 ; 8 , точки перехода = 3 ; 8 , ядро = 5 ; 6 , граница = 3 ; 4 ; 7 ; 8 .

Нечеткое множество A , определенное на универсальном множестве X , называется выпуклым , если μ A x ≥ min μ A a ; μ A b ; a < x < b ; x , a , b ∈ X (рис.2.3).

Рис.2.3. Функции принадлежности выпуклого и невыпуклого нечетких множеств