Мгновенная скорость неравномерного. Неравномерное движение

Как мы уже отмечали, равномерное движение является простейшей моделью механического движения. Если такая модель неприменима, то необходимо использовать более сложные. Для их построения нам необходимо ввести и рассмотреть понятие скорости в случае неравномерного движения.
 Пусть материальная точка движется так, что ее закон движения имеет вид плавной кривой АСВ (рис. 40).

Рис. 40
За интервал времени от t o до t 1 координата точки изменилась от х o до х 1 . Если мы вычислим скорость по прежнему правилу
v cp = Δx/Δt = (x 1 − x o)/(t 1 − t o) . (1)
и запишем уравнение закона движения как для равномерного движения
х = х o + v сp (t − t o) , (2)
то эта функция будет совпадать с реальным законом движения только в крайних точках интервала, там, где прямая АВ (которая описывается уравнением (2)) пересекается с кривой АСВ . Если же мы захотим вычислить по формуле (2) координату точки в промежуточный момент времени то получим значение х // , которое может заметно отличаться от истинного значения х / .
Таким образом, скорость (она называется средней скоростью), вычисленная по формуле (1), в данном случае характеризует быстроту перемещения точки на всем интервале в среднем, но она не позволяет вычислять координаты точки в произвольный момент времени.
 Средней скоростью называется физическая величина, равная отношению изменения координаты точки к интервалу времени, в течение которого это изменение произошло.
 Геометрический смысл средней скорости − коэффициент наклона секущей АВ графика закона движения.
 Для более детального, более точного описания движения можно задать два значения средней скорости:
 а) на промежутке времени от t o до t /
v cp1 = (x / − x o)/(t / − t o) ;
 б) на промежутке времени от t / до t 1
v cp2 = (x 1 − x /)/(t 1 − t /) .
 Если по этим двум средним скоростям построить закон движения, то он будет изображаться ломаной АСВ , которая точнее описывает реальное движение точки. А если и такая точность нас не устраивает, то необходимо дробить временные интервалы дальше − на четыре, восемь и т. д. частей. При этом необходимо задавать соответственно четыре, восемь и т. д. значений средних скоростей. Согласитесь, такое описание становится громоздким и неудобным. Выход из этой ситуации давно найден − он заключается в том, что нужно рассматривать скорость как функцию времени.
 Давайте посмотрим, как будет меняться средняя скорость при уменьшении промежутка времени, за который мы эту скорость вычисляем. Будем вычислять среднюю скорость за интервал времени от t o до t 1 , последовательно приближая значение к t o . При этом семейство секущих А o A 1 , А o A 1 / , А o A 1 // (рис. 41)

рис. 41
будет стремиться к некоторому предельному положению прямой А o B , которая является касательной к графику закона движения.
 Приведем иной пример закона движения, чтобы показать, что мгновенная скорость может быть как больше, так и меньше средней скорости (рис. 42 с теми обозначениями, что и на рис. 41).

рис. 42
 Процедуру уточнения описания движения можно показать и алгебраически, последовательно вычисляя отношения
v cp = (x 1 − x o)/(t 1 − t o), v cp / = (x 1 / − x o)/(t 1 / − t o), v cp // = (x 1 // − x o)/(t 1 // − t o) .
При этом оказывается, что эти величины приближаются к некоторому вполне определенному значению. Это предельное значение получило название мгновенной скорости.
 Мгновенной скоростью называется отношение изменения координаты точки к интервалу времени, за которое это изменение произошло, при интервале времени, стремящемся к нулю 1 :
v = Δx/Δt при Δt → 0 . (3)
 Геометрический смысл мгновенной скорости − коэффициент наклона касательной к графику закона движения.
 Таким образом, мы «привязали» значение мгновенной скорости к конкретному моменту времени − задали значение скорости в данный момент времени в данной точке пространства. Тем самым у нас появилась возможность рассматривать скорость тела как функцию времени, или функцию координаты.
С математической точки зрения это гораздо удобней, чем задавать значения средних скоростей на многих малых временных промежутках. Давайте задумаемся: а имеет ли физический смысл − скорость в данный момент времени? Скорость − характеристика движения, в данном случае − перемещения тела в пространстве. Для того чтобы зафиксировать перемещение, необходимо наблюдать за движением в течение некоторого промежутка времени. Чтобы измерить скорость, также необходим промежуток времени. Даже самые совершенные измерители скорости − радарные установки − измеряют скорость движущихся автомобилей пусть за малый (порядка одной миллионной доли секунды) промежуток, но не в какой-то момент времени. Следовательно, выражение «скорость в данный момент времени» с точки зрения физики некорректно. Тем не менее в механике постоянно пользуются понятием мгновенной скорости, которое очень удобно в математических расчетах. Математически, логически мы можем рассмотреть предельный переход Δt → 0 , а физически имеется минимально возможное значение промежутка Δt , за который можно измерить скорость.
 Однако если мы изучаем движение автомобиля в течение нескольких часов, то промежуток времени в одну секунду может считаться бесконечно малым.
 Таким образом, понятие мгновенной скорости является разумным компромиссом между простотой математического описания и строгим физическим смыслом. Такие «компромиссы» нам будут встречаться в ходе изучения физики постоянно.
 В дальнейшем, говоря о скорости, мы будем иметь в виду именно мгновенную скорость. Заметим, при равномерном движении мгновенная скорость равна ранее определенной скорости потому, что при равномерном движении отношение Δx/Δt не зависит от величины промежутка времени, поэтому остается неизменным и при сколь угодно малом Δt .
 Так как скорость может зависеть от времени, то ее следует рассматривать как функцию времени и изображать ее в виде графика.
 При равномерном движении с постоянной скоростью у график зависимости скорости от времени является прямой линией, параллельной оси времени (на рис. 43 − прямая АВ ).
Рассмотрим промежуток времени от t o до t 1 . Произведение величины этого интервала (t 1 − t o ) на скорость v o равно, с одной стороны изменению координаты Δx , а сдругой − площади прямоугольника под графиком зависимости скорости от времени.

рис. 43
 Площадь под графиком следует понимать, опять же таки в физическом смысле, как произведение физических величин, имеющих различную размерность, а не в чисто геометрическом смысле − как произведение длин отрезков.
 Покажем, что площадь под графиком зависимости скорости от времени равна изменению координаты при любой зависимости скорости от времени v(t) . Разобьем время движения от t o до t на малые интервалы величиной Δt ; на каждом интервале определим среднюю скорость v 1 . Тогда площадь прямоугольника с основанием Δt и высотой v 1 (на рис. 44 он отмечен более плотной штриховкой) будет равна изменению координаты за этот малый промежуток времени. Сумма площадей всех таких прямоугольников (на рис. 44 заштрихованы)

рис. 44
будет равна изменению координаты точки за рассматриваемый промежуток времени движения от t o до t 1 . Если теперь все интервалы времени Δt уменьшать (соответственно увеличивая при этом их число), то суммы площадей прямоугольников будут стремиться к площади криволинейной трапеции под графиком функции v(t) .
 Дополним наше определение площади под кривой еще одной договоренностью: будем считать, что если кривая лежит t под осью времени (то есть скорость отрицательна), то и соответствующую площадь будем считать отрицательной (рис. 45).

рис. 45

«Физика - 10 класс»

Какую скорость показывает спидометр?
Может ли городской транспорт двигаться равномерно и прямолинейно?

Реальные тела (человек, автомобиль, ракета, теплоход и т. д.), как правило, не движутся с постоянной скоростью. Они начинают двигаться из состояния покоя, и их скорость увеличивается постепенно, при остановке скорость уменьшается также постепенно, таким образом, реальные тела движутся неравномерно.

Неравномерное движение может быть как прямолинейным, так и криволинейным.

Чтобы полностью описать неравномерное движение точки, надо знать её положение и скорость в каждый момент времени.

Скорость точки в данный момент времени называется мгновенной скоростью .

Что же понимают под мгновенной скоростью?

Пусть точка, двигаясь неравномерно и по кривой линии, в некоторый момент времени t занимает положение М (рис. 1.24). По прошествии времени Δt 1 от этого момента точка займёт положение М 1 , совершив перемещение Δ 1 . Поделив вектор Δ 1 на промежуток времени Δt 1 найдём такую скорость равномерного прямолинейного движения с которой должна была бы двигаться точка, чтобы за время Δt попасть из положения М в положение М 1 . Эту скорость называют средней скоростью перемещения точки за время Δt 1 .

Обозначив её через ср1 , запишем: Средняя скорость направлена вдоль секущей ММ 1 . По той же формуле мы находим скорость точки при равномерном прямолинейном движении.

Скорость, с которой должна равномерно и прямолинейно двигаться точка, чтобы попасть из начального положения в конечное за определённый промежуток времени, называется средней скоростью перемещения.

Для того чтобы определить скорость в данный момент времени, когда точка занимает положение М, найдём средние скорости за всё меньшие и меньшие промежутки времени:

Интересно, верно ли следующее определение мгновенной скорости: «Скорость тела в данной точке траектории называется мгновенной скоростью»?

При уменьшении промежутка времени Δt перемещения точки уменьшаются по модулю и меняются по направлению. Соответственно этому средние скорости также меняются как по модулю, так и по направлению. Но по мере приближения промежутка времени Δt к нулю средние скорости всё меньше и меньше будут отличаться друг от друга. А это означает, что при стремлении промежутка времени Δt к нулю отношение стремится к определённому вектору как к своему предельному значению. В механике такую величину называют скоростью точки в данный момент времени или просто мгновенной скоростью и обозначают

Мгновенная скорость точки есть величина, равная пределу отношения перемещения Δ к промежутку времени Δt, в течение которого это перемещение произошло, при стремлении промежутка Δt к нулю.

Выясним теперь, как направлен вектор мгновенной скорости. В любой точке траектории вектор мгновенной скорости направлен так, как в пределе, при стремлении промежутка времени Δt к нулю, направлена средняя скорость перемещения. Эта средняя скорость в течение промежутка времени Δt направлена так, как направлен вектор перемещения Δ Из рисунка 1.24 видно, что при уменьшении промежутка времени Δt вектор Δ уменьшая свою длину, одновременно поворачивается. Чем короче становится вектор Δ, тем ближе он к касательной, проведённой к траектории в данной точке М, т. е. секущая переходит в касательную. Следовательно,

мгновенная скорость направлена по касательной к траектории (см. рис. 1.24).

В частности, скорость точки, движущейся по окружности, направлена по касательной к этой окружности. В этом нетрудно убедиться. Если маленькие частички отделяются от вращающегося диска, то они летят по касательной, так как имеют в момент отрыва скорость, равную скорости точек на окружности диска. Вот почему грязь из-под колёс буксующей автомашины летит по касательной к окружности колёс (рис. 1.25).

Понятие мгновенной скорости - одно из основных понятий кинематики. Это понятие относится к точке. Поэтому в дальнейшем, говоря о скорости движения тела, которое нельзя считать точкой, мы можем говорить о скорости какой-нибудь его точки.

Помимо средней скорости перемещения, для описания движения чаще пользуются средней путевой скоростью cps .

Средняя путевая скорость определяется отношением пути к промежутку времени, за который этот путь пройден:

Когда мы говорим, что путь от Москвы до Санкт-Петербурга поезд прошёл со скоростью 80 км/ч, мы имеем в виду именно среднюю путевую скорость движения поезда между этими городами. Модуль средней скорости перемещения при этом будет меньше средней путевой скорости, так как s > |Δ|.

Для неравномерного движения также справедлив закон сложения скоростей. В этом случае складываются мгновенные скорости.

Это векторная физическая величина, численно равная пределу, к которому стремится средняя скорость за бесконечно малый промежуток времени:

Другими словами, мгновенная скорость – это радиус-вектора по времени.

Вектор мгновенной скорости всегда направлен по касательной к траектории тела в сторону движения тела.

Мгновенная скорость дает точную информацию о движении в определенный момент времени. Например, при езде в автомобиле в некоторый момент времени водитель смотрит на спидометр и видит, что прибор показывает 100 км/ч. Через некоторое время стрелка спидометра указывает на величину 90 км/ч, а еще спустя несколько минут – на величину 110 км/ч. Все перечисленные показания спидометра – это значения мгновенной скорости автомобиля в определенные моменты времени. Скорость в каждый момент времени и в каждой точке траектории необходимо знать при стыковке космических станций, при посадке самолетов и т.д.

Имеет ли понятие «мгновенной скорости» физический смысл? Скорость – это характеристика изменения в пространстве. Однако, для того, чтобы определить, как изменилось перемещение, необходимо наблюдать за движением в течение некоторого времени. Даже самые совершенные приборы для измерения скорости такие как радарные установки, измеряют скорость за промежуток времени – пусть достаточно малый , однако это все-таки конечный временной интервал, а не момент времени. Выражение «скорость тела в данный момент времени» с точки зрения физики не является корректным. Однако, понятие мгновенной скорости очень удобно в математических расчетах, и им постоянно пользуются.

Примеры решения задач по теме «Мгновенная скорость»

ПРИМЕР 1

ПРИМЕР 2

Задание Закон движения точки по прямой задается уравнением . Найти мгновенную скорость точки через 10 секунд после начала движения.
Решение Мгновенная скорость точки – это радиус-вектора по времени. Поэтому для мгновенной скорости можно записать:

Через 10 секунд после начала движения мгновенная скорость будет иметь значение:

Ответ Через 10 секунд после начала движения мгновенная скорость точки м/с.

ПРИМЕР 3

Задание Тело движется по прямой так, что его координата (в метрах) изменяется по закону . Через сколько секунд после начала движения тело остановится?
Решение Найдем мгновенную скорость тела:

Неравномерным считается движение с изменяющейся скоростью. Скорость может изменяться по направлению. Можно заключить, что любое движение НЕ по прямой траектории является неравномерным. Например, движение тела по окружности, движение тела брошенного вдаль и др.

Скорость может изменяться по численному значению. Такое движение тоже будет неравномерным. Особенный случай такого движения - равноускоренное движение.

Иногда встречается неравномерное движение, которое состоит из чередования различного вида движений, например, сначала автобус разгоняется (движение равноускоренное), потом какое-то время движется равномерно, а потом останавливается.

Мгновенная скорость

Охарактеризовать неравномерное движение можно лишь скоростью. Но скорость всегда изменяется! Поэтому можно говорить лишь о скорости в данное мгновение времени. Путешествуя на машине спидометр ежесекундно демонстрирует вам мгновенную скорость движения. Но время при этом надо уменьшить не до секунды, а рассматривать гораздо меньший промежуток времени!

Средняя скорость

Что же такое средняя скорость? Неверно думать, что необходимо сложить все мгновенные скорости и разделить на их количество. Это самое распространенное заблуждение о средней скорости! Средняя скорость - это весь путь разделить на затраченное время . И никакими другими способами она не определяется. Если рассмотреть движение автомобиля, можно оценить его средние скорости на первой половине пути, на второй, на всем пути. Средние скорости могут быть одинаковыми, а могут быть различными на этих участках.

У средних величин рисуют сверху горизонтальную черту.

Средняя скорость перемещения. Средняя путевая скорость

Если движение тела не является прямолинейным, то пройденный телом путь будет больше, чем его перемещение. В этом случае средняя скорость перемещения отличается от средней путевой скорости. Путевая скорость - скаляр .


Главное запомнить

1) Определение и виды неравномерного движения;
2) Различие средней и мгновенной скоростей;
3) Правило нахождения средней скорости движения

Часто требуется решить задачу, где весь путь разбит на равные участки, даны средние скорости на каждом участке, требуется найти среднюю скорость движения на всем пути. Неверное решение будет, если сложить средние скорости и разделить на их количество. Ниже выводится формула, которую можно использовать при решении подобных задач.

Мгновенную скорость можно определить с помощью графика движения. Мгновенная скорость тела в любой точке на графике определяется наклоном касательной к кривой в соответствующей точке. Мгновенная скорость - тангенс угла наклона касательной к графику функции.


Упражнения

Во время езды на автомобиле через каждую минуту снимались показания спидометра. Можно ли по этим данным определить среднюю скорость движения автомобиля?

Нельзя, так как в общем случае величина средней скорости не равна среднему арифметическому значению величин мгновенных скоростей. А путь и время не даны.


Какую скорость переменного движения показывает спидометр автомобиля?

Близкую к мгновенной. Близкую, так как промежуток времени должен быть бесконечно мал, а при снятии показаний со спидометра так о времени судить нельзя.


В каком случае мгновенная и средняя скорости равны между собой? Почему?

При равномерном движении. Потому что скорость не изменяется.


Скорость движения молотка при ударе равна 8м/с. Какая это скорость: средняя или мгновенная?