Описания процессов первого деления мейоза. Размножение клеток: Мейоз

Мейозом (редукционным делением) называют такое непрямое деление клеток, при котором дочерние клетки получают гаплоидный (одинарный) набор хромосом.

Процесс уменьшения диплоидного (двойного) набора хромосом до одинарного (гаплоидного) называется редукцией числа хромосом, поэтому процесс непрямого деления клеток, сопровождающийся появлением гаплоидного набора хромосом у дочерних клеток, называется редукционным.

Мейоз состоит из двух последовательно протекающих мейотических делений, между которыми интерфаза практически отсутствует.

Первое мейотическое деление, как и при митозе, начинается с профазы (следует помнить, что исходные (родительские) клетки имеют диплоидный набор хромосом, но тетраплоидное количество ядерного вещества). Профаза длится от нескольких часов до нескольких недель. За это время двухроматидные хромосомы (каждая) спирализуются и выявляются в своей структуре. Гомологичные (парные) хромосомы сближаются и конъюгируют (переплетаются). При конъюгации двух гомологичных хромосом образуется единая структура, состоящая из четырех хроматид, называемая бивалентом.

Конъюгация гомологичных хромосом приводит к тому, что возникающие биваленты способствуют обновлению ядерного вещества у хромосом за счет кроссинговера.

Кроссинговер - обмен ядерным веществом у конъюгировавших гомологичных хромосом.

В ряде случаев кроссинговера при конъюгации не происходит и вновь возникшие хромосомы после конъюгации остаются неизменными. Кроссинговер имеет большое значение в передаче признаков родителей потомкам, так как в результате его протекания происходит перекомбинация генов, что может способствовать либо гибели организмов, либо лучшей их выживаемости в условиях среды обитания.

В остальном профаза-I не отличается от таковой для обычного митоза, и ее результат тот же. После профазы-I клетка вступает в метафазу-I.

Метафаза-I аналогична таковой для метафазы обычного митоза, но имеет и свои особенности. В ней каждая бивалента прикрепляется к тянущим нитям веретена, разделяется на хромосомы и набор к концу метафазы остается диплоидным (в митозе он становился тетраплоидным). После завершения метафазы-I клетка вступает в анафазу-I.

Анафаза-I протекает аналогично анафазе в митозе, при этом к полюсам клетки, случайно распределяясь, расходятся гомологичные хромосомы. В конце анафазы-I около полюсов клетки возникает гаплоидный набор хромосом (с диплоидным количеством ядерного вещества, так как каждая хромосома содержит две хроматидные нити). По числу хромосом это деление будет редукционным, так как число хромосом по сравнению с родительской клеткой уменьшилось вдвое, т. е. произошла редукция числа хромосом, но не ядерного вещества. Наличие в клетке двойного количества ядерного вещества является побудительной причиной для второго мейотического деления.

Телофаза-I следует за анафазой-I и существенно не отличается от телофазы митоза, но имеет свои специфические особенности. После возникновения первичной мембраны между клетками происходит восстановление клеточного центра, перетяжка отделяет одну клетку от другой. Но в отличие от митоза, деспирализации хромосом не происходит, ядра не образуется. Длительность телофазы-I невелика. Интерфаза между первым и вторым делением отсутствует. Сразу после телофазы-I клетка вступает во второе мейотическое деление (в него вступают одновременно обе клетки, возникшие в результате первого деления).

Второе мейотическое деление начинается с профазы-II. Профаза-II сильно отличается от профазы-I, так как у родительских клеток нет ядра, хромосомы четко выражены и спирализированы. Процессы этой фазы сводятся к тому, что центриоли клеточного центра расходятся к разным полюсам клеток и возникает веретено деления. Хромосомы концентрируются на экваторе клеток, и далее наступает метафаза-II.

Метафаза-II напоминает метафазу-I, т. е. хромосомы прикрепляются к тянущим нитям веретена, между хроматидными нитями возникает пространство, центриоли делятся и в клетках возникает диплоидный набор хромосом (а был гаплоидный). Далее клетки вступают в анафазу-II.

Анафаза-II протекает так же, как и при митозе. В результате анафазы-II около каждого полюса двух родительских клеток возникает гаплоидное число хромосом и гаплоидное количество ядерного вещества, далее клетки вступают в телофазу-II.

Телофаза-II протекает так же, как и при митозе.

В результате мейоза в целом возникает четыре дочерние клетки, обладающие гаплоидным набором хромосом (n) и гаплоидным количеством ядерного вещества (с). Эти клетки в зависимости от процесса могут быть все равноценные (например, сперматозоиды при сперматогенезе) либо различные (одна яйцеклетка и три сопутствующие клетки, которые затем редуцируются при овогенезе). При мейозе образуются и споры растений (при спорогенезе).

Биологическая роль мейоза состоит в том, что он создает предпосылки для реализации полового процесса. В конечном счете мейоз непосредственно (гаметогенез у животных) или опосредованно (спорогенез у растений) создает предпосылки к осуществлению полового процесса (слияния гамет), который приводит к обновлению наследственного (ядерного) вещества у потомства, что позволяет последнему легче приспособиться к условиям существования в среде обитания.

Общая характеристика гаметогенеза

Гаметогенез - процесс образования половых клеток (гамет). Гаметами называют половые клетки, с помощью которых реализуется половой процесс. По характеру гамет различают два типа половых клеток: мужские половые клетки (сперматозоиды или спермии) и женские половые клетки (яйцеклетки).

Сперматозоиды являются мужскими половыми клетками, имеющими органоиды - жгутики (как правило, один). Спермии жгутиков не имеют и состоят только из головки. Сперматозоид образован жгутиком и головкой, которая состоит из ядра и слоя цитоплазмы. Главная биологическая функция сперматозоида и спермия - достичь яйцеклетки и слиться с ней. Поэтому мужские гаметы имеют короткий срок жизни и небольшой запас питательных веществ. Спермии характерны для растений и приспособлены к пассивному перемещению в процессе оплодотворения.

Женские половые гаметы являются яйцеклетками. Это крупные неподвижные клетки, богатые запасом питательных веществ. Их главная биологическая функция - обеспечить развитие зародыша после слияния с мужской гаметой. Аналогично протекает и спорогенез у растений.

По характеру формирования гамет различают сперматогенез и овогенез (оогенез).

Общая характеристика сперматогенеза

Сперматогенез - процесс формирования мужских половых клеток (мужских гамет, сперматозоидов).

У животных сперматогенез осуществляется в мужских половых железах - семенниках (яичках). Мужская половая железа имеет три зоны: I - зона размножения клеток; II - зона роста клеток; III - зона созревания клеток.

В зоне размножения клетки митотически делятся и в конечном итоге образуют сперматогонии. Сперматогонии переходят в зону роста, растут до определенного размера и переходят в зону созревания.

В зоне созревания сперматогонии превращаются в сперматоциты 1-го порядка, которые способны к мейозу, что делает возможным образование (в будущем) мужских гамет. При образовании сперматозоидов, сперматоциты 1-го порядка подвергаются собственно сперматогенезу, т. е. вступают в мейотическое деление. Они имеют диплоидный набор хромосом и тетраплоидное количество ядерного вещества. В результате первого мейотического деления из сперматоцитов 1-го порядка образуются сперматоциты 2-го порядка. Они имеют гаплоидный набор хромосом, но диплоидное количество ядерного вещества.

Сперматоциты 2-го порядка вступают во второе мейотическое деление и из них образуются по два сперматозоида (из двух сперматоцитов 1-го порядка образуется четыре сперматозоида). На этом сперматогенез завершается.

Итак, при сперматогенезе из одной исходной клетки (сперматоцита 1-го порядка) образуется четыре равноценных гаметы - сперматозоида, обладающих гаплоидным набором хромосом и гаплоидным количеством ядерного вещества.

Общая характеристика овогенеза (оогенеза)

Овогенез (оогенез) - образование женских гамет (яйцеклеток).

Яйцеклетка - женская половая клетка, обладающая достаточно крупными размерами, содержащая большое количество питательных веществ, не способная к передвижению.

Овогенез реализуется в женских половых железах - в яичниках. В результате овогенеза из одной исходной клетки образуется одна женская гамета, обладающая гаплоидным набором хромосом и гаплоидным количеством ядерного вещества.

Основными клетками яичников, участвующими в овогенезе, являются оогонии - клетки с диплоидным набором хромосом, которые в дальнейшем способны образовывать ооциты. Из оогониев образуются ооциты 1-го порядка. Эти ооциты имеют диплоидный набор хромосом и тетраплоидное количество ядерного вещества и способны к мейозу. Ооциты 1-го порядка представляют собой особое состояние клеток и отличаются от оогониев, так как последние способны к митозу, а первые - к мейозу.

Ооциты 1-го порядка вступают в первое мейотическое деление, в результате которого образуются две неравноценные клетки - ооцит 2-го порядка (крупная клетка с гаплоидным набором хромосом, но диплоидным количеством ядерного вещества; в этой клетке сосредоточена практически вся масса исходной клетки - ооцита 1-го порядка) и вторая клетка - первое полярное тельце (подобна ооциту 2-го порядка, за исключением массы тела, которая очень мала по сравнению с массой ооцита 2-го порядка).

Следовательно, при овогенезе из одной исходной клетки образуется только одна яйцеклетка.

Особенности сперматогенеза и овогенеза у растений

У растений при гаметогенезе мейотического деления не происходит, так как гаметы образуются в организмах полового поколения (в гаметофитах), клетки которого являются гаплоидными из-за того, что гаметофит развивается из спор. Споры образуются при спорогенезе, при котором осуществляется мейоз, поэтому споры обладают гаплоидным набором хромосом и гаплоидным количеством ядерного вещества. Схема спорогенеза в целом напоминает сперматогенез, отличаясь от такового лишь тем, что в результате спорогенеза образуются гаплоидные споры, а при сперматогенезе - гаплоидные сперматозоиды.

Сперматогенез у растений происходит в антеридиях и не сопровождается мейозом. Овогенез у высших растений происходит в архегониях (кроме покрытосеменных растений). Более подробно этот вопрос будет рассмотрен в подразделе, посвященном развитию растений.

Узнать о виде деления клетки поможет данная статья. Мы расскажем кратко и понятно о мейозе, о фазах, которые сопровождают этот процесс, обозначим основные их особенности, узнаем, какие признаки характеризуют мейоз.

Что такое мейоз?

Редукционное деление клетки, другими словами - мейоз – это вид деления ядра, при котором число хромосом уменьшается в два раза.

В переводе с древнегреческого языка, мейоз обозначает уменьшение.

Данный процесс происходит в два этапа:

  • Редукционный ;

На этом этапе в процессе мейоза число хромосом в клетке уменьшается вдвое.

  • Эквационный ;

В ходе второго деления гаплоидность клеток сохраняется.

ТОП-4 статьи которые читают вместе с этой

Особенностью данного процесса является то, что протекает он только лишь в диплоидных, а также в чётных полиплоидных клетках. А всё потому, что в результате первого деления в профазе 1 в нечётных полиплоидах нет возможности обеспечить попарное слияние хромосом.

Фазы мейоза

В биологии деление происходит на протяжении четырёх фаз: профазы, метафазы, анафазы и телофазы . Мейоз не является исключением, особенностью данного процесса является то, что происходит он в два этапа, между которыми имеется короткая интерфаза .

Первое деление:

Профаза 1 является достаточно сложным этапом всего процесса в целом, состоит она из пяти стадий, которые внесены в следующую таблицу:

Стадия

Признак

Лептотена

Хромосомы укорачиваются, конденсируется ДНК и образуются тонкие нити.

Зиготена

Гомологичные хромосомы соединяются в пары.

Пахитена

По длительности самая длинная фаза, в ходе которой гомологические хромосомы плотно присоединяются друг к другу. В результате происходит обмен некоторых участков между ними.

Диплотена

Хромосомы частично деконденсируются, часть генома начинает выполнять свои функции. Образуется РНК, синтезируется белок, при этом хромосомы ещё соединены между собой.

Диакинез

Снова происходит конденсация ДНК, процессы образования прекращаются, ядерная оболочка исчезает, центриоли располагаются в противоположных полюсах, но хромосомы соединены между собой.

Заканчивается профаза образованием веретена деления, разрушением ядерных мембран и самого ядрышка.

Метофаза первого деления знаменательна тем, что хромосомы выстраиваются вдоль экваториальной части веретена деления.

Во время анафазы 1 сокращаются микротрубочки, биваленты разделяются и хромосомы расходятся к разным полюсам.

В отличие от митоза, на этапе анафазы к полюсам отходят целые хромосомы, которые состоят из двух хроматид.

На этапе телофазы деспирализуются хромосомы и образуется новая ядерная оболочка.

Рис. 1. Схема мейоза первого этапа деления

Второе деление имеет такие признаки:

  • Для профазы 2 характерна конденсация хромосом и разделение клеточного центра, продукты деления которого расходятся к противоположным полюсам ядра. Ядерная оболочка разрушается, образуется новое веретено деления, которое располагается перпендикулярно по отношению к первому веретену.
  • В ходе метафазы хромосомы вновь располагаются на экваторе веретена.
  • Во время анафазы хромосомы делятся и хроматиды располагаются по разным полюсам.
  • Телофаза обозначена деспирализацией хромосом и появлением новой ядерной оболочки.

Рис. 2. Схема мейоза второго этапа деления

В результате из одной диплоидной клетки путём такого деления получаем четыре гаплоидных клетки. Исходя из этого, делаем выводы, что мейоз - это форма митоза, в результате которого из диплоидных клеток половых желёз образуются гаметы.

Значение мейоза

В ходе мейоза на этапе профазы 1 происходит процесс кроссинговера - перекомбинация генетического материала. Помимо этого во время анафазы, как первого, так и второго деления, хромосомы и хроматиды расходятся к разным полюсам в случайном порядке. Это объясняет комбинативную изменчивость исходных клеток.

В природе мейоз имеет огромное значение, а именно:

  • Это один из основных этапов гаметогенеза;

Рис. 3. Схема гаметогенеза

  • Осуществляет передачу генетического кода при размножении;
  • Получаемые дочерние клетки не похожи на материнскую клетку, а также различаются между собой.

Мейоз очень важен для образования половых клеток, так как в результате оплодотворения гамет ядра сливаются. В противном случае в зиготе число хромосом было бы вдвое больше. Благодаря такому делению половые клетки гаплоидны, а при оплодотворении восстанавливается диплоидность хромосом.

Что мы узнали?

Мейоз - это вид деления эукариотической клетки, при котором из одной диплоидной клетки образуется четыре гаплоидных, путём уменьшения числа хромосом. Весь процесс проходит в два этапа - редукционного и эквационного, каждый из которых состоит из четырёх фаз - профазы, метафазы, анафазы и телофазы. Мейоз очень важен для образования гаметы, для передачи генетической информации будущим поколениям, а также осуществляет перекомбинацию генетического материала.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 967.

Мейоз (от греч. meiosis - уменьшение) - процесс деления клеточного ядра с образованием четырех дочерних ядер, каждое из которых содержит вдвое меньше хромосом, чем исходное ядро. Мейоз - редукционное деление: происходит уменьшение числа хромосом в клетке с диплоидного (2 n) до гаплоидного (n). Мейоз сопровождает образование гамет у животных и образование спор у растений. В результате мейоза получаются гаплоидные ядра, при слиянии которых во время оплодотворения восстанавливается диплоидный набор хромосом

Мейоз (схема). В результате мейоза возникают четыре гаметы с различающимися между собой гаплоидными наборами хромосом (Harnden , 1965).

Мейоз включает два последовательных деления . В каждом мейотическом делении выделяют четыре стадии: профазу, метафазу, анафазу и телофазу.

Первое мейотическое деление называют редукционным. В результате из одной клетки с диплоидным набором хромосом образуются две с гаплоидным набором.

Профаза I - профаза первого мейотического деления - самая продолжительная. Ее условно делят на пять стадий: лептотену, зиготену, пахитену, диплотену и диакинез.

Первая стадия - лептотена - характеризуется увеличением ядра. В ядре виден диплоидный набор хромосом. Хромосомы представляют собой длинные, тонкие нити. Каждая хромосома состоит из двух хроматид. Хроматиды имеют хромомерное

строение. Начинается спирализация хромосом.

Во время второй стадии профазы 1 - го мейотического деления - зиготене -происходит конъюгация гомологичных хромосом. Гомологичными называют хромосомы, имеющие одинаковую форму и размер: одна из них получена от матери, другая от отца. Гомологичные хромосомы притягиваются и прикладываются друг к другу по всей длине. Центромера одной из парных хромосом точно прилегает к центромере другой, и каждая хроматида прилегает к гомологичной хроматиде

Третья стадия - пахитена - стадия толстых нитей. Конъюгирующие хромосомы тесно прилегают друг к другу. Такие сдвоенные хромосомы называют бивалентами. Каждый бивалент состоит из четверки (тетрады) хроматид. Число бивалентов равно гаплоидному набору хромосом. Происходит дальнейшая спирализация. Тесный контакт между хроматидами дает возможность обмениваться идентичными участками в гомологичных хромосомах. Это явление называется кроссинговер (англ. crossing over - перекрест).

Четвертая стадия - диплотена - характеризуется возникновением сил отталкивания. Хромосомы, составляющие биваленты, начинают отходить друг от друга. Расхождение начинается в области центромер. Хромосомы соединены между собой в нескольких точках. Эти точки называют хиазмами (от греч. chiasma -перекрест), т. е. местами, где произойдет кроссинговер. В каждой хиазме осуществляется обмен участками хроматид. Хромосомы спирализуются и укорачиваются.

Пятая стадия - диакинез - характеризуется максимальной спирализацией, укорочением и утолщением хромосом. Отталкивание хромосом продолжается, но они остаются соединенными в биваленты своими концами. Ядрышко и ядерная оболочка растворяются. Центриоли расходятся к полюсам.

Таким образом, в профазе 1 - го мейотического деления происходят три основных процесса:

1) конъюгация гомологичных хромосом;

2) образование бивалентов хромосом или тетрад хроматид;

3) кроссинговер.

Метафаза I . В метафазе первого мейотического деления биваленты хромосом располагаются по экватору клетки, образуя метафазную пластинку. К ним прикрепляются нити веретена деления.

Анафаза I . В анафазе первого мейотического деления к полюсам клетки расходятся хромосомы, а не хроматиды. В дочерние клетки попадают только по одной из пары гомологичных хромосом.

Телофаза I . В телофазе первого мейотического деления число хромосом в каждой клетке становится гаплоидным. Хромосомы состоят из двух хроматид. Вследствие кроссинговера при образовании хиазм, хроматиды генетически не однородны. На короткое время образуется ядерная оболочка, хромосомы

деспирализуются, ядро становится интерфазным. Затем у животной клетки начинается деление цитоплазмы, а у растительной клетки формирование клеточной стенки. У многих растений нет телофазы I , клеточная стенка не образуется, нет интерфазы II , клетки сразу переходят из анафазы I в профазу II .

Интерфаза II. Эта стадия есть только у животных клеток. Во время интерфазы между первым и вторым делением в S период не происходит редупликация молекул

Второе мейотическое деление называют эквационным. Оно похоже на митоз. Из хромосом, имеющих две хроматиды, образуются хромосомы, состоящие из одной хроматиды.

Профаза II . В профазе второго мейотического деления хромосомы утолщаются и укорачиваются. Ядрышко и ядерная оболочка разрушаются. Образуется веретено деления.

Метафаза II . В метафазе второго мейотического деления хромосомы выстраиваются вдоль экватора. Нити ахроматинового веретена отходят к полюсам. Образуется метафазная пластинка.

Анафаза II . В анафазе второго мейотического деления центромеры делятся и тянут за собой к противоположным полюсам отделившиеся друг от друга хроматиды, называемые хромосомами.

Телофаза II, В телофазе второго мейотического деления хромосомы деспирализуются, становятся невидимыми. Нити веретена исчезают. Вокруг ядер формируется ядерная оболочка. Ядра содержат гаплоидный набор хромосом. Происходит деление цитоплазмы и образование клеточной стенки у растений. Из одной исходной клетки образуются четыре гаплоидных клетки.

ЗНАЧЕНИЕ МЕЙОЗА

1. Поддержание постоянства числа хромосом. Если бы не возникало редукции числа хромосом при гаметогенезе, и половые клетки имели гаплоидный набор хромосом, то из поколения в поколение возрастало бы их число.

2. При мейозе образуется большое число новых комбинаций негомологичных хромосом.

3. В процессе кроссинговера имеют место рекомбинации генетического
материала.

Практически все хромосомы, попадающие в гаметы, содержат участки, происходящие как первоначально от отцовской, так и от материнской хромосомы. Этим достигается большая степень перекомбинации наследственного материала. В этом одна из причин изменчивости организмов, дающая материал для отбора.

Развитие и рост живых организмов невозможен без процесса деления клеток. В природе существует несколько видов и способов деления. В данной статье мы кратко и понятно расскажем о митозе и мейозе, разъясним основное значение этих процессов, познакомим с тем, чем отличаются они, а чем схожи.

Митоз

Процесс непрямого деления, или митоз, чаще всего встречается в природе. На нём основывается деление всех существующих неполовых клеток, а именно мышечных, нервных, эпителиальных и прочих.

Состоит митоз из четырёх фаз: профазы, метафазы, анафазы и телофазы. Основная роль данного процесса - равномерное распределение генетического кода от родительской клетки к двум дочерним. При этом клетки нового поколения один к одному схожи с материнскими.

Рис. 1. Схема митоза

Время между процессами деления называются интерфазой . Чаще всего интерфаза гораздо длиннее митоза. Для этого периода характерны:

  • синтез белка и молекулы АТФ в клетке;
  • удваивание хромосом и образование двух сестринских хроматид;
  • увеличение числа органоидов в цитоплазме.

Мейоз

Деление половых клеток называется мейозом, оно сопровождается уменьшением числа хромосом вдвое. Особенность данного процесса состоит в том, что проходит он в два этапа, которые непрерывно следуют друг за другом.

ТОП-4 статьи которые читают вместе с этой

Интерфаза между двумя этапами деления мейоза настолько кратковременна, что практически незаметна.

Рис. 2. Схема мейоза

Биологическим значением мейоза является образование чистых гамет, которые содержат гаплоидный, другими словами одинарный, набор хромосом. Диплоидность восстанавливается после оплодотворения, то есть слияния материнской и отцовской клетки. В результате слияния двух гамет образуется зигота с полным набором хромосом.

Уменьшение числа хромосом при мейозе очень важно, так как в противном случае при каждом делении число хромосом увеличивалось бы. Благодаря редукционному делению поддерживается постоянное число хромосом.

Сравнительная характеристика

Отличие митоза и мейоза состоит в продолжительности фаз и происходящих в них процессах. Ниже предлагаем вам таблицу «Митоз и мейоз», где указаны основные различия двух способов деления. Фазы мейоза такие же, как и у митоза. Подробнее узнать о сходствах и различиях двух процессов вы сможете в сравнительной характеристике.

Фазы

Митоз

Мейоз

Первое деление

Второе деление

Интерфаза

Набор хромосом материнской клетки диплоидный. Синтезируется белок, АТФ и органические вещества. Хромосомы удваиваются, образуются две хроматиды, соединённые центромерой.

Диплоидный набор хромосом. Происходят те же действия, что и при митозе. Отличием является продолжительность, особенно при образовании яйцеклеток.

Гаплоидный набор хромосом. Синтез отсутствует.

Непродолжительная фаза. Растворяются ядерные мембраны и ядрышко, формируется веретено деления.

Занимает больше времени, чем при митозе. Также исчезают ядерная оболочка и ядрышко, формируется веретено деления. Помимо этого наблюдается процесс конъюгации (сближение и слияние гомологичных хромосом). При этом происходит кроссинговер - обмен генетической информации на некоторых участках. После хромосомы расходятся.

По продолжительности - короткая фаза. Процессы такие же, как и при митозе, только с гаплоидными хромосомами.

Метафаза

Наблюдается спирализация и расположение хромосом в экваториальной части веретена.

Аналогично митозу

Тоже, что и при митозе, только с гаплоидным набором.

Центромеры делятся на две самостоятельные хромосомы, которые расходятся к разным полюсам.

Деление центромер не происходит. К полюсам отходит одна хромосома, состоящая из двух хроматид.

Аналогично митозу, только с гаплоидным набором.

Телофаза

Цитоплазма делится на две одинаковые дочерние клетки с диплоидным набором, образуются ядерные мембраны с ядрышками. Веретено деления исчезает.

По длительности непродолжительная фаза. Гомологичные хромосомы располагаются в разных клетках с гаплоидным набором. Цитоплазма делится не во всех случаях.

Цитоплазма делится. Образуется четыре гаплоидные клетки.

Рис. 3. Сравнительная схема митоза и мейоза

Что мы узнали?

В природе деление клеток отличается в зависимости от их назначения. Так, например, неполовые клетки делятся путём митоза, а половые - мейоза. Эти процессы имеют схожие схемы деления на некоторых этапах. Главным отличием является наличие числа хромосом у образованного нового поколения клеток. Так при митозе у новообразованного поколения диплоидный набор, а при мейозе гаплоидный набор хромосом. Время протекания фаз деления также отличаются. Огромную роль в жизнедеятельности организмов играют оба способа деления. Без митоза не проходит ни одно обновление старых клеток, репродукция тканей и органов. Мейоз помогает поддерживать постоянное количество хромосом в новообразованном организме при размножении.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 4199.

Размножение клеток – один из важнейших биологических процессов, является необходимым условием существования всего живого. Репродукция осуществляется путем деления исходной клетки.

Клетка – это наименьшая морфологическая единица строения любого живого организма, способная к самопроизводству и саморегуляции. Время ее существования от деления до гибели или же последующей репродукции называется клеточным циклом.

Ткани и органы состоят из различных клеток, которые имеют свой период существования. Каждая из них растет и развивается, чтобы обеспечивать жизнедеятельность организма. Длительность митотического периода различна: клетки крови и кожи входят в процесс деления каждые 24 часа, а нейроны способны к репродукции только у новорожденных, а затем вовсе утрачивают способность к размножению.

Существует 2 вида деления — прямое и непрямое . Соматические клетки размножаются непрямым путем, гаметам или половым клеткам присущ мейоз (прямое деление).

Митоз — непрямое деление

Митотический цикл

Митотический цикл включает 2 последовательных этапа: интерфазу и митотическое деление.

Интерфаза (стадия покоя) – подготовка клетки к дальнейшему разделению, где совершается дублирование исходного материала, с последующим его равномерным распределением между новообразованными клетками. Она включает 3 периода:

    • Пресинтетический (G-1) G – от английского gar, то есть промежуток, идет подготовка к последующему синтезу ДНК, выработка ферментов. Экспериментально проводилось ингибирование первого периода, вследствие чего клетка не вступала в следующую фазу.
    • Синтетический (S) — основа клеточного цикла. Происходит репликация хромосом и центриолей клеточного центра. Только после этого клетка может перейти к митозу.
    • Постсинтетический (G-2) или премитотический период — происходит накопление иРНК, которая нужна для наступления собственно митотического этапа. В G-2 периоде синтезируются белки (тубулины) – основная составляющая митотического веретена.

После окончания премитотического периода начинается митотическое деление . Процесс включает 4 фазы:

  1. Профаза – в этот период разрушается ядрышко, растворяется мембрана ядра (нуклеолема), центриоли располагаются на противоположных полюсах, формируя аппарат для деления. Имеет две подфазы:
    • ранняя — видны нитеобразные тела (хромосомы), они еще не четко отделены друг от друга;
    • поздняя — прослеживаются отдельные части хромосом.
  2. Метафаза – начинается с момента разрушения нуклеолемы, когда хромосомы хаотично лежат в цитоплазме и только начинают двигаться к экваториальной плоскости. Между собой все пары хроматид связаны в месте центромеры.
  3. Анафаза – в один момент разобщаются все хромосомы и движутся к противоположным точкам клетки. Это короткая и очень важная фаза, поскольку именно в ней происходит точный раздел генетического материала.
  4. Телофаза – хромосомы останавливаются, снова образуется ядерная мембрана, ядрышка. Посередине образуется перетяжка, она делит тело материнской клетки на две дочерние, завершая митотический процесс. В новообразованных клетках снова начинается G-2 период.

Мейоз — прямое деление


Мейоз — прямое деление

Существует особый процесс репродукции, встречающийся только в половых клетках (гаметах) – это мейоз (прямое деление) . Отличительной чертой для него является отсутствие интерфазы. Мейоз из одной исходной клетки дает четыре, с гаплоидным набором хромосом. Весь процесс прямого деления включает два последовательных этапа, которые состоят из профазы, метафазы, анафазы и телофазы.

Перед началом профазы у половых клетках происходит удвоение исходного материала, таким образом, она становится тетраплоидной.

Профаза 1:

  1. Лептотена — хромосомы просматриваются в виде тоненьких ниток, происходит их укорочение.
  2. Зиготена — стадия конъюгации гомологичных хромосом, как следствие образуются биваленты. Конъюгация важный момент мейоза, хромосомы максимально сближаются друг с другом, чтобы осуществить кроссинговер.
  3. Пахитена — происходит утолщение хромосом, их все большее укорочение, идет кроссинговер (обмен генетической информацией между гомологичными хромосомами, это основа эволюции и наследственной изменчивости).
  4. Диплотена – стадия удвоенных нитей, хромосомы каждого бивалента расходятся, сохраняя связь только в области перекреста (хиазмы).
  5. Диакинез — ДНК начинает конденсироваться, хромосомы становятся совсем короткими и расходятся.

Профаза заканчивается разрушением нуклеолемы и формированием веретена деления.

Метафаза 1 : биваленты расположены посередине клетки.

Анафаза 1 :к противоположным полюсам движутся удвоенные хромосомы.

Телофаза 1 :завершается процесс деления, клетки получают по 23 бивалента.

Без последующего удвоения материала клетка вступает во второй этап деления.

Профаза 2 : снова повторяются все процессы, которые были в профазе 1,а именно конденсация хромосом, что хаотично располагаются между органеллами.

Метафаза 2 : две хроматиды, соединенные в месте перекреста (униваленты), располагаются в экваториальной плоскости, создавая пластинку, названную метафазной.

Анафаза 2: — унивалент разделяется на отдельные хроматиды или монады, и они направляются к разным полюсам клетки.

Телофаза 2 : процесс деления завершается, формируется ядерная оболочка, и каждая клетка получает по 23 хроматиды.

Мейоз – важный механизм в жизни всех организмов. В результате такого деления мы получаем 4 гаплоидные клетки, которые имеют половину нужного набора хроматид. Во время оплодотворения две гаметы образуют полноценную диплоидную клетку, сохраняя присущей ей кариотип.

Сложно представить наше существования без мейотического деления, иначе все организмы с каждым последующим поколение получали бы удвоенные наборы хромосом.