Что делает минусовая степень. Возведение в степень: правила, примеры

В рамках этого материала мы разберем, что такое степень числа. Помимо основных определений мы сформулируем, что такое степени с натуральными, целыми, рациональными и иррациональными показателями. Как всегда, все понятия будут проиллюстрированы примерами задач.

Yandex.RTB R-A-339285-1

Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a), а в качестве показателя – натуральное (обозначим буквой n).

Определение 1

Степень числа a с натуральным показателем n – это произведение n -ного числа множителей, каждый из которых равен числу а. Записывается степень так: a n , а в виде формулы ее состав можно представить следующим образом:

Например, если показатель степени равен 1 , а основание – a , то первая степень числа a записывается как a 1 . Учитывая, что a – это значение множителя, а 1 – число множителей, мы можем сделать вывод, что a 1 = a .

В целом можно сказать, что степень – это удобная форма записи большого количества равных множителей. Так, запись вида 8 · 8 · 8 · 8 можно сократить до 8 4 . Примерно так же произведение помогает нам избежать записи большого числа слагаемых (8 + 8 + 8 + 8 = 8 · 4) ; мы это уже разбирали в статье, посвященной умножению натуральных чисел.

Как же верно прочесть запись степени? Общепринятый вариант – « a в степени n ». Или можно сказать « n -ная степень a » либо « a n -ной степени». Если, скажем, в примере встретилась запись 8 12 , мы можем прочесть « 8 в 12 -й степени», « 8 в степени 12 » или « 12 -я степень 8 -ми».

Вторая и третья степени числа имеют свои устоявшиеся названия: квадрат и куб. Если мы видим вторую степень, например, числа 7 (7 2) , то мы можем сказать « 7 в квадрате» или «квадрат числа 7 ». Аналогично третья степень читается так: 5 3 – это «куб числа 5 » или « 5 в кубе». Впрочем, употреблять стандартную формулировку «во второй/третьей степени» тоже можно, это не будет ошибкой.

Пример 1

Разберем пример степени с натуральным показателем: для 5 7 пятерка будет основанием, а семерка – показателем.

В основании не обязательно должно стоять целое число: для степени (4 , 32) 9 основанием будет дробь 4 , 32 , а показателем – девятка. Обратите внимание на скобки: такая запись делается для всех степеней, основания которых отличаются от натуральных чисел.

Например: 1 2 3 , (- 3) 12 , - 2 3 5 2 , 2 , 4 35 5 , 7 3 .

Для чего нужны скобки? Они помогают избежать ошибок в расчетах. Скажем, у нас есть две записи: (− 2) 3 и − 2 3 . Первая из них означает отрицательное число минус два, возведенное в степень с натуральным показателем три; вторая – число, соответствующее противоположному значению степени 2 3 .

Иногда в книгах можно встретить немного другое написание степени числа – a ^ n (где а – основание, а n - показатель). То есть 4 ^ 9 – это то же самое, что и 4 9 . В случае, если n представляет собой многозначное число, оно берется в скобки. Например, 15 ^ (21) , (− 3 , 1) ^ (156) . Но мы будем использовать обозначение a n как более употребительное.

О том, как вычислить значение степени с натуральным показателем, легко догадаться из ее определения: нужно просто перемножить a n -ное число раз. Подробнее об этом мы писали в другой статье.

Понятие степени является обратным другому математическому понятию – корню числа. Если мы знаем значение степени и показатель, мы можем вычислить ее основание. Степень обладает некоторыми специфическими свойствами, полезными для решения задач, которые мы разобрали в рамках отдельного материала.

В показателях степени могут стоять не только натуральные числа, но и вообще любые целые значения, в том числе отрицательные и нули, ведь они тоже принадлежат к множеству целых чисел.

Определение 2

Степень числа с целым положительным показателем можно отобразить в виде формулы: .

При этом n – любое целое положительное число.

Разберемся с понятием нулевой степени. Для этого мы используем подход, учитывающий свойство частного для степеней с равными основаниями. Оно формулируется так:

Определение 3

Равенство a m: a n = a m − n будет верно при условиях: m и n – натуральные числа, m < n , a ≠ 0 .

Последнее условие важно, поскольку позволяет избежать деления на ноль. Если значения m и n равны, то мы получим следующий результат: a n: a n = a n − n = a 0

Но при этом a n: a n = 1 - частное равных чисел a n и a . Выходит, что нулевая степень любого отличного от нуля числа равна единице.

Однако такое доказательство не подходит для нуля в нулевой степени. Для этого нам нужно другое свойство степеней – свойство произведений степеней с равными основаниями. Оно выглядит так: a m · a n = a m + n .

Если n у нас равен 0 , то a m · a 0 = a m (такое равенство также доказывает нам, что a 0 = 1 ). Но если а также равно нулю, наше равенство приобретает вид 0 m · 0 0 = 0 m , Оно будет верным при любом натуральном значении n , и неважно при этом, чему именно равно значение степени 0 0 , то есть оно может быть равно любому числу, и на верность равенства это не повлияет. Следовательно, запись вида 0 0 своего особенного смысла не имеет, и мы не будем ему его приписывать.

При желании легко проверить, что a 0 = 1 сходится со свойством степени (a m) n = a m · n при условии, что основание степени не равно нулю. Таким образом, степень любого отличного от нуля числа с нулевым показателем равна единице.

Пример 2

Разберем пример с конкретными числами: Так, 5 0 - единица, (33 , 3) 0 = 1 , - 4 5 9 0 = 1 , а значение 0 0 не определено.

После нулевой степени нам осталось разобраться, что из себя представляет степень отрицательная. Для этого нам понадобится то же свойство произведения степеней с равными основаниями, которое мы уже использовали выше: a m · a n = a m + n .

Введем условие: m = − n , тогда a не должно быть равно нулю. Из этого следует, что a − n · a n = a − n + n = a 0 = 1 . Выходит, что a n и a − n у нас являются взаимно обратными числами.

В итоге a в целой отрицательной степени есть не что иное, как дробь 1 a n .

Такая формулировка подтверждает, что для степени с целым отрицательным показателем действительны все те же свойства, которыми обладает степень с натуральным показателем (при условии, что основание не равно нулю).

Пример 3

Степень a с целым отрицательным показателем n можно представить в виде дроби 1 a n . Таким образом, a - n = 1 a n при условии a ≠ 0 и n – любое натуральное число.

Проиллюстрируем нашу мысль конкретными примерами:

Пример 4

3 - 2 = 1 3 2 , (- 4 . 2) - 5 = 1 (- 4 . 2) 5 , 11 37 - 1 = 1 11 37 1

В последней части параграфа попробуем изобразить все сказанное наглядно в одной формуле:

Определение 4

Степень числа a с натуральным показателем z ​​ – это: a z = a z , e с л и z - ц е л о е п о л о ж и т е л ь н о е ч и с л о 1 , z = 0 и a ≠ 0 , (п р и z = 0 и a = 0 п о л у ч а е т с я 0 0 , з н а ч е н и я в ы р а ж е н и я 0 0 н е о п р е д е л я е т с я)   1 a z , е с л и z - ц е л о е о т р и ц а т е л ь н о е ч и с л о и a ≠ 0 (е с л и z - ц е л о е о т р и ц а т е л ь н о е ч и с л о и a = 0 п о л у ч а е т с я 0 z , е г о з н а ч е н и е н е о п р е д е л я е т с я)

Что такое степени с рациональным показателем

Мы разобрали случаи, когда в показателе степени стоит целое число. Однако возвести число в степень можно и тогда, когда в ее показателе стоит дробное число. Это называется степенью с рациональным показателем. В этом пункте мы докажем, что она обладает теми же свойствами, что и другие степени.

Что такое рациональные числа? В их множество входят как целые, так и дробные числа, при этом дробные числа можно представить в виде обыкновенных дробей (как положительных, так и отрицательных). Сформулируем определение степени числа a с дробным показателем m / n , где n – натуральное число, а m – целое.

У нас есть некоторая степень с дробным показателем a m n . Для того, чтобы свойство степени в степени выполнялось, равенство a m n n = a m n · n = a m должно быть верным.

Учитывая определение корня n -ной степени и что a m n n = a m , мы можем принять условие a m n = a m n , если a m n имеет смысл при данных значениях m , n и a .

Приведенные выше свойства степени с целым показателем будут верными при условии a m n = a m n .

Основной вывод из наших рассуждений таков: степень некоторого числа a с дробным показателем m / n – это корень n -ой степени из числа a в степени m . Это справедливо в том случае, если при данных значениях m , n и a выражение a m n сохраняет смысл.

1. Мы можем ограничить значение основания степени: возьмем a , которое при положительных значениях m будет больше или равно 0 , а для отрицательных – строго меньше (поскольку при m ≤ 0 мы получаем 0 m , а такая степень не определена). В таком случае определение степени с дробным показателем будет выглядеть следующим образом:

Степень с дробным показателем m / n для некоторого положительного числа a есть корень n -ной степени из a, возведенного в степень m . В виде формулы это можно изобразить так:

Для степени с нулевым основанием это положение также подходит, но только в том случае, если ее показатель – положительное число.

Степень с нулевым основанием и дробным положительным показателем m / n можно выразить как

0 m n = 0 m n = 0 при условии целого положительного m и натурального n .

При отрицательном отношении m n < 0 степень не определяется, т.е. такая запись смысла не имеет.

Отметим один момент. Поскольку мы ввели условие, что a больше или равно нулю, то у нас оказались отброшены некоторые случаи.

Выражение a m n иногда все же имеет смысл при некоторых отрицательных значениях a и некоторых m . Так, верны записи (- 5) 2 3 , (- 1 , 2) 5 7 , - 1 2 - 8 4 , в которых основание отрицательно.

2. Второй подход – это рассмотреть отдельно корень a m n с четными и нечетными показателями. Тогда нам потребуется ввести еще одно условие: степень a , в показателе которой стоит сократимая обыкновенная дробь, считается степенью a , в показателе которой стоит соответствующая ей несократимая дробь. Позже мы объясним, для чего нам это условие и почему оно так важно. Таким образом, если у нас есть запись a m · k n · k , то мы можем свести ее к a m n и упростить расчеты.

Если n – нечетное число, а значение m – положительно, a – любое неотрицательное число, то a m n имеет смысл. Условие неотрицательного a нужно, поскольку корень четной степени из отрицательного числа не извлекают. Если же значение m положительно, то a может быть и отрицательным, и нулевым, т.к. корень нечетной степени можно извлечь из любого действительного числа.

Объединим все данные выше определения в одной записи:

Здесь m/n означает несократимую дробь, m – любое целое число, а n – любое натуральное число.

Определение 5

Для любой обыкновенной сократимой дроби m · k n · k степень можно заменить на a m n .

Степень числа a с несократимым дробным показателем m / n – можно выразить в виде a m n в следующих случаях: - для любых действительных a , целых положительных значений m и нечетных натуральных значений n . Пример: 2 5 3 = 2 5 3 , (- 5 , 1) 2 7 = (- 5 , 1) - 2 7 , 0 5 19 = 0 5 19 .

Для любых отличных от нуля действительных a , целых отрицательных значений m и нечетных значений n , например, 2 - 5 3 = 2 - 5 3 , (- 5 , 1) - 2 7 = (- 5 , 1) - 2 7

Для любых неотрицательных a , целых положительных значений m и четных n , например, 2 1 4 = 2 1 4 , (5 , 1) 3 2 = (5 , 1) 3 , 0 7 18 = 0 7 18 .

Для любых положительных a , целых отрицательных m и четных n , например, 2 - 1 4 = 2 - 1 4 , (5 , 1) - 3 2 = (5 , 1) - 3 , .

В случае других значений степень с дробным показателем не определяется. Примеры таких степеней: - 2 11 6 , - 2 1 2 3 2 , 0 - 2 5 .

Теперь объясним важность условия, о котором говорили выше: зачем заменять дробь с сократимым показателем на дробь с несократимым. Если бы мы этого не сделали бы, то получились бы такие ситуации, скажем, 6 / 10 = 3 / 5 . Тогда должно быть верным (- 1) 6 10 = - 1 3 5 , но - 1 6 10 = (- 1) 6 10 = 1 10 = 1 10 10 = 1 , а (- 1) 3 5 = (- 1) 3 5 = - 1 5 = - 1 5 5 = - 1 .

Определение степени с дробным показателем, которое мы привели первым, удобнее применять на практике, чем второе, поэтому мы будем далее пользоваться именно им.

Определение 6

Таким образом, степень положительного числа a с дробным показателем m / n определяется как 0 m n = 0 m n = 0 . В случае отрицательных a запись a m n не имеет смысла. Степень нуля для положительных дробных показателей m / n определяется как 0 m n = 0 m n = 0 , для отрицательных дробных показателей мы степень нуля не определяем.

В выводах отметим, что можно записать любой дробный показатель как в виде смешанного числа, так и в виде десятичной дроби: 5 1 , 7 , 3 2 5 - 2 3 7 .

При вычислении же лучше заменять показатель степени обыкновенной дробью и далее пользоваться определением степени с дробным показателем. Для примеров выше у нас получится:

5 1 , 7 = 5 17 10 = 5 7 10 3 2 5 - 2 3 7 = 3 2 5 - 17 7 = 3 2 5 - 17 7

Что такое степени с иррациональным и действительным показателем

Что такое действительные числа? В их множество входят как рациональные, так и иррациональные числа. Поэтому для того, чтобы понять, что такое степень с действительным показателем, нам надо определить степени с рациональными и иррациональными показателями. Про рациональные мы уже упоминали выше. Разберемся с иррациональными показателями пошагово.

Пример 5

Допустим, что у нас есть иррациональное число a и последовательность его десятичных приближений a 0 , a 1 , a 2 , . . . . Например, возьмем значение a = 1 , 67175331 . . . , тогда

a 0 = 1 , 6 , a 1 = 1 , 67 , a 2 = 1 , 671 , . . . , a 0 = 1 , 67 , a 1 = 1 , 6717 , a 2 = 1 , 671753 , . . .

Последовательности приближений мы можем поставить в соответствие последовательность степеней a a 0 , a a 1 , a a 2 , . . . . Если вспомнить, что мы рассказывали ранее о возведении чисел в рациональную степень, то мы можем сами подсчитать значения этих степеней.

Возьмем для примера a = 3 , тогда a a 0 = 3 1 , 67 , a a 1 = 3 1 , 6717 , a a 2 = 3 1 , 671753 , . . . и т.д.

Последовательность степеней можно свести к числу, которое и будет значением степени c основанием a и иррациональным показателем a . В итоге: степень с иррациональным показателем вида 3 1 , 67175331 . . можно свести к числу 6 , 27 .

Определение 7

Степень положительного числа a с иррациональным показателем a записывается как a a . Его значение – это предел последовательности a a 0 , a a 1 , a a 2 , . . . , где a 0 , a 1 , a 2 , . . . являются последовательными десятичными приближениями иррационального числа a . Степень с нулевым основанием можно определить и для положительных иррациональных показателей, при этом 0 a = 0 Так, 0 6 = 0 , 0 21 3 3 = 0 . А для отрицательных этого сделать нельзя, поскольку, например, значение 0 - 5 , 0 - 2 π не определено. Единица, возведенная в любую иррациональную степень, остается единицей, например, и 1 2 , 1 5 в 2 и 1 - 5 будут равны 1 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Урок и презентация на тему: "Степень с отрицательным показателем. Определение и примеры решения задач"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Пособие к учебнику Муравина Г.К.    Пособие к учебнику Алимова Ш.А.

Определение степени с отрицательным показателем

Ребята, мы с вами хорошо умеем возводить числа в степень.
Например: $2^4=2*2*2*2=16$  ${(-3)}^3=(-3)*(-3)*(-3)=27$.

Мы хорошо знаем, что любое число в нулевой степени равно единице. $a^0=1$, $a≠0$.
Возникает вопрос, а что будет, если возвести число в отрицательную степень? Например, чему будет равно число $2^{-2}$?
Первые математики, задавшиеся этим вопросом, решили, что изобретать велосипед заново не стоит, и хорошо, чтобы все свойства степеней оставались прежними. То есть при умножении степеней с одинаковым основанием, показатели степени складываются.
Давайте рассмотрим такой случай: $2^3*2^{-3}=2^{3-3}=2^0=1$.
Получили, что произведение таких чисел должно давать единицу. Единица в произведении получается при перемножении обратных чисел, то есть $2^{-3}=\frac{1}{2^3}$.

Такие рассуждения привели к следующему определению.
Определение. Если $n$ – натуральное число и $а≠0$, то выполняется равенство: $a^{-n}=\frac{1}{a^n}$.

Важное тождество, которое часто используется: $(\frac{a}{b})^{-n}=(\frac{b}{a})^n$.
В частности, $(\frac{1}{a})^{-n}=a^n$.

Примеры решения

Пример 1.
Вычислите: $2^{-3}+(\frac{2}{5})^{-2}-8^{-1}$.

Решение.
Рассмотрим каждое слагаемое по отдельности.
1. $2^{-3}=\frac{1}{2^3}=\frac{1}{2*2*2}=\frac{1}{8}$.
2. $(\frac{2}{5})^{-2}=(\frac{5}{2})^2=\frac{5^2}{2^2}=\frac{25}{4}$.
3. $8^{-1}=\frac{1}{8}$.
Осталось выполнить операции сложения и вычитания: $\frac{1}{8}+\frac{25}{4}-\frac{1}{8}=\frac{25}{4}=6\frac{1}{4}$.
Ответ: $6\frac{1}{4}$.

Пример 2.
Представить заданное число в виде степени простого числа $\frac{1}{729}$.

Решение.
Очевидно, что $\frac{1}{729}=729^{-1}$.
Но 729 - не простое число, заканчивающиеся на 9. Можно предположить, что это число является степенью тройки. Последовательно разделим 729 на 3.
1) $\frac{729}{3}=243$;
2) $\frac{243}{3}=81$;
3) $\frac{81}{3}=27$;
4) $\frac{27}{3}=9$;
5) $\frac{9}{3}=3$;
6) $\frac{3}{3}=1$.
Выполнено шесть операций и значит: $729=3^6$.
Для нашей задачи:
$729^{-1}=(3^6)^{-1}=3^{-6}$.
Ответ: $3^{-6}$.

Пример 3. Представьте выражение в виде степени: $\frac{a^6*(a^{-5})^2}{(a^{-3}*a^8)^{-1}}$.
Решение. Первое действие выполняется всегда внутри скобок, затем умножение $\frac{a^6*(a^{-5})^2}{(a^{-3}*a^8)^{-1}}=\frac{a^6*a^{-10}}{(a^5)^{-1}}=\frac{a^{(-4)}}{a^{(-5)}}=a^{-4-(-5)}=a^{-4+5}=a$.
Ответ: $a$.

Пример 4. Докажите тождество:
$(\frac{y^2 (xy^{-1}-1)^2}{x(1+x^{-1}y)^2}*\frac{y^2(x^{-2}+y^{-2})}{x(xy^{-1}+x^{-1}y)}):\frac{1-x^{-1} y}{xy^{-1}+1}=\frac{x-y}{x+y}$.

Решение.
В левой части рассмотрим каждый сомножитель в скобках отдельно.
1. $\frac{y^2(xy^{-1}-1)^2}{x(1+x^{-1}y)^2}=\frac{y^2(\frac{x}{y}-1)^2}{x(1+\frac{y}{x})^2} =\frac{y^2(\frac{x^2}{y^2}-2\frac{x}{y}+1)}{x(1+2\frac{y}{x}+\frac{y^2}{x^2})}=\frac{x^2-2xy+y^2}{x+2y+\frac{y^2}{x}}=\frac{x^2-2xy+y^2}{\frac{x^2+2xy+y^2}{x}}=\frac{x(x^2-2xy+y^2)}{(x^2+2xy+y^2)}$.
2. $\frac{y^2(x^{-2}+y^{-2})}{x(xy^{-1}+x^{-1}y)}=\frac{y^2(\frac{1}{x^2}+\frac{1}{y^2})}{x(\frac{x}{y}+\frac{y}{x})} =\frac{\frac{y^2}{x^2}+1}{\frac{x^2}{y}+y}=\frac{\frac{y^2+x^2}{x^2}}{{\frac{x^2+y^2}{y}}}=\frac{y^2+x^2}{x^2} *\frac{y}{x^2+y^2}=\frac{y}{x^2}$.
3. $\frac{x(x^2-2xy+y^2)}{(x^2+2xy+y^2)}*\frac{y}{x^2}=\frac{y(x^2-2xy+y^2)}{x(x^2+2xy+y^2)}=\frac{y(x-y)^2}{x(x+y)^2}$.
4. Перейдем к дроби, на которую делим.
$\frac{1-x^{-1}y}{xy^{-1}+1}=\frac{1-\frac{y}{x}}{\frac{x}{y}+1}=\frac{\frac{x-y}{x}}{\frac{x+y}{y}}=\frac{x-y}{x}*\frac{y}{x+y}=\frac{y(x-y)}{x(x+y)}$.
5. Выполним деление.
$\frac{y(x-y)^2}{x(x+y)^2}:\frac{y(x-y)}{x(x+y)}=\frac{y(x-y)^2}{x(x+y)^2}*\frac{x(x+y)}{y(x-y)}=\frac{x-y}{x+y}$.
Получили верное тождество, что и требовалось доказать.

В конце урока еще раз запишем правила действий со степенями, здесь показатель степени - это целое число.
$a^s*a^t=a^{s+t}$.
$\frac{a^s}{a^t}=a^{s-t}$.
$(a^s)^t=a^{st}$.
$(ab)^s=a^s*b^s$.
$(\frac{a}{b})^s=\frac{a^s}{b^s}$.

Задачи для самостоятельного решения

1. Вычислите: $3^{-2}+(\frac{3}{4})^{-3}+9^{-1}$.
2. Представить заданное число в виде степени простого числа $\frac{1}{16384}$.
3. Представьте выражение в виде степени:
$\frac{b^{-8}*(b^3)^{-4}}{(b^2*b^{-7})^3}$.
4. Докажите тождество:
$(\frac{b^{-m}-c^{-m}}{b^{-m}+c^{-m}}+\frac{b^{-m}+c^{-m}}{c^{-m}-b^{-m}})=\frac{4}{b^m c^{-m}-b^{-m}c^m} $.

Со школы всем нам известно правило о возведении в степень: любое число с показателем N равно результату перемножения данного числа на самого себя N-ное количество раз. Иными словами, 7 в степени 3 - это 7, умноженное на себя три раза, то есть 343. Еще одно правило - возведение любой величины в степень 0 дает единицу, а возведение отрицательной величины представляет собой результат обычного возведения в степень, если она четная, и такой же результат со знаком «минус», если она нечетная.

Правила же дают и ответ, как возводить число в отрицательную степень. Для этого нужно возвести обычным способом нужную величину на модуль показателя, а потом единицу поделить на результат.

Из этих правил становится понятно, что выполнение реальных задач с оперированием большими величинами потребует наличия технических средств. Вручную получится перемножить на самого себя максимум диапазон чисел до двадцати-тридцати, и то не более трех-четырех раз. Это не говоря уж о том, чтобы потом еще и единицу разделить на результат. Поэтому тем, у кого нет под рукой специального инженерного калькулятора, мы расскажем, как возвести число в отрицательную степень в Excel.

Решение задач в Excel

Для разрешения задач с возведением в степень Excel позволяет пользоваться одним из двух вариантов.

Первое - это использование формулы со стандартным знаком «крышечка». Введите в ячейки рабочего листа следующие данные:

Таким же образом можно возвести нужную величину в любую степень - отрицательную, дробную. Выполним следующие действия и ответим на вопрос о том, как возвести число в отрицательную степень. Пример:

Можно прямо в формуле подправить =B2^-C2.

Второй вариант - использование готовой функции «Степень», принимающей два обязательных аргумента - число и показатель. Чтобы приступить к ее использованию, достаточно в любой свободной ячейке поставить знак «равно» (=), указывающий на начало формулы, и ввести вышеприведенные слова. Осталось выбрать две ячейки, которые будут участвовать в операции (или указать конкретные числа вручную), и нажать на клавишу Enter. Посмотрим на нескольких простых примерах.

Формула

Результат

СТЕПЕНЬ(B2;C2)

СТЕПЕНЬ(B3;C3)

0,002915

Как видим, нет ничего сложного в том, как возводить число в отрицательную степень и в обычную с помощью Excel. Ведь для решения данной задачи можно пользоваться как привычным всем символом «крышечка», так и удобной для запоминания встроенной функцией программы. Это несомненный плюс!

Перейдем к более сложным примерам. Вспомним правило о том, как возводить число в отрицательную степень дробного характера, и увидим, что эта задача очень просто решается в Excel.

Дробные показатели

Если кратко, то алгоритм вычисления числа с дробным показателем следующий.

  1. Преобразовать дробный показатель в правильную или неправильную дробь.
  2. Возвести наше число в числитель полученной преобразованной дроби.
  3. Из полученного в предыдущем пункте числа вычислить корень, с условием, что показателем корня будет знаменатель дроби, полученной на первом этапе.

Согласитесь, что даже при оперировании малыми числами и правильными дробями подобные вычисления могут занять немало времени. Хорошо, что табличному процессору Excel без разницы, какое число и в какую степень возводить. Попробуйте решить на рабочем листе Excel следующий пример:

Воспользовавшись вышеприведенными правилами, вы можете проверить и убедиться, что вычисление произведено правильно.

В конце нашей статьи приведем в форме таблицы с формулами и результатами несколько примеров, как возводить число в отрицательную степень, а также несколько примеров с оперированием дробными числами и степенями.

Таблица примеров

Проверьте на рабочем листе книги Excel следующие примеры. Чтобы все заработало корректно, вам необходимо использовать смешанную ссылку при копировании формулы. Закрепите номер столбца, содержащего возводимое число, и номер строки, содержащей показатель. Ваша формула должна иметь примерно следующий вид: «=$B4^C$3».

Число / Степень

Обратите внимание, что положительные числа (даже нецелые) без проблем вычисляются при любых показателях. Не возникает проблем и с возведением любых чисел в целые показатели. А вот возведение отрицательного числа в дробную степень обернется для вас ошибкой, поскольку невозможно выполнить правило, указанное в начале нашей статьи про возведение отрицательных чисел, ведь четность - это характеристика исключительно ЦЕЛОГО числа.

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.