Какие фармакологические действия. Действие лекарственных средств

ЛЕКЦИЯ № 7

ФАРМАКОДИНАМИКА ЛЕКАРСТВЕННЫХ СРЕДСТВ

Фармакодинамика - раздел фармакологии, изучающий типы, виды, механизмы, локализацию действия ЛВ на организм, побочные и токсические эффекты, а также зависимость действия ЛВ от различных условий и факторов.

Типы действия лекарственных средств

Для лекарственных веществ характерны специфические типы фармакологического действия: обратимое, необратимое, возбуждающее и угнетающее.

Обратимое действие оказывают следующие ЛС адреналина гидрохлорид, нитроглицерин действуют несколько минут; дей­ствие анальгина, атропина сульфат, несколько часов или суток.

Необратимое действие харак­терно при действии на организм солей тяжелых металлов, мышьяка, бактерицидных химиотерапевтических средств, которое выражается в глубоких структурных наруше­ниях клеток и их гибели. (прижигание бо­родавок нитратом серебра.

Возбуждающее и угнетающее действие является результатом взаимодействия ЛС с клетками и внутриклеточными образова­ниями тканей и органов, при которых происходит стимуляция или блокирование различных систем организ­ма.

Примерами возбуждающего действия могут быть эффекты препаратов следующих фармакологических групп: психостиму­ляторов ЦНС (кофеин), аналептиков (сульфокамфокаин), сла­бительных средств (бисакодил) и др.

Угнетающее действие оказывают антигипертензивные (капотен), снотворные (нитразепам) средства и др.

Обратимость или необратимость возбуждающего и угнета­ющего действия ЛВ может зависеть от режима его дозирования: от величины принимаемой дозы, частоты и длительности при­менения.

Виды действия лекарственных средств

В зависимости от свойств и природы происхождения ЛС могут проявляться различные виды их фармакологического действия.

Главное действие - основное действие лекарственного пре­парата, ради которого его используют в клинической практике.

Побочное действие – это любая реакция на ЛС, вредное и нежелательное для организма, возникающее при его назначении для лечения, профилактики и диагностики заболевания.

Резорбтивное действие (от лат. resorbtio - всасывание) ЛС развивается после всасывания в кровь и распределения по всему организму. Так действуют многие ЛС: снотворные, аналь­гетики, гипотензивные и др.

Местное действие ЛС развивается при их непосредственном контакте с тканями организма, например с кожей, слизистыми оболочками. Так, действуют раздражающие, местноанестезирующие, вяжущие, прижигающие и другие вещества.

Рефлекторное действие ЛС проявляется на некотором рас­стоянии от места их первоначального контакта с тканями с участием всех звеньев рефлекторной дуги. Примером может служить действие паров аммиака при обмороке.



Прямое действие оказывают препараты, непосредственно воз­действующие на рецепторы. Например, адренергические сред­ства (адреналин) непосредственно стимулируют адренорецепторы; антиадренергические (пропранолол, атенолол, празозин) блокируют их, препятствуя дейст­вию на них медиатора норадреналина.

Косвенное действие возникает как следствие влияния ЛВ на "мишени", опосредованно формирующие конкретный фарма­кологический эффект. Например, ди­уретический эффект сердечных гликозидов связан с повышением работы сердца, улучшением кровообращения и нормализацией функции почек.

Избирательное действие ЛВ обусловлено их сродством к рецептору или органу и зависит от химической структуры био­логически активного вещества, наличия в его структуре опре­деленных функциональных групп. Например, сердечные гликозиды оказывают избирательное влияние на сердечную мыш­цу, окситоцин - на гладкую мускулатуру матки.

Преимущественное действие заключается в том, что один и тот же препарат влияет на различные рецепторы, но более выраженный фармакологический эффект воздействует на оп­ределенный рецептор. Например, изадрин влияет на β1 и β 2 -адренорецепторы, но преимущественное действие оказывает на β2 -адренорецепторы.

Центральное действие ЛС направлено на ЦНС. К таким препаратам относятся психотропные средства (нейролептики, транквилизаторы, аналептики, психостимуляторы), средства для наркоза, наркотические анальгетики и др.

Периферическое действие развивается при воздействии ЛС непосредственно на печень, почки, сердце, сосуды, органы дыхания или эфферентные нервы, иннервирующие внутренние органы и скелетную мускулатуру.

ФАРМАКОДИНАМИКА.

ТИПЫ И ВИДЫ ДЕЙСТВИЯ ЛС. ВИДЫ ФАРМАКОТЕРАПИИ. ХРОНОФАРМАКОЛОГИЯ.

Общая цель занятия. Формирование представлений об общих закономерностях фармакодинамики, принципах дозирования, зависимости действия лекарственного средства от его дозы, физиологического состояния организма и лекарственной формы. Изучить виды доз, иметь представление о широте терапевтического действия и терапевтическом индексе. Сформировать у студента представление о предпосылках и значении комбинированного применения лекарственных средств. Составить представление о рациональных и нерациональных комбинациях лекарственных средств, принципах составления рациональных комбинаций. Изучить основные варианты лекарственных взаимодействий. Сформировать у студента представление о реакции организма на повторное введение лекарственных средств, о побочном действии лекарственных средств, основных принципах помощи при отравлении лекарственных средств. Изучить виды побочных реакций, развивающихся вследствие функциональных и структурных изменений в органах и системах.

Конкретные цели занятия

Студент должен знать:

Основные виды фармакотерапии;

Основные виды и типы действия лекарственных средств;

Основные механизмы действия лекарственных средств;

Клеточные мишени действия лекарственных средств;

Рецепторный механизм действия лекарственных средств;

Виды терапевтических и токсических доз;

Определение широты терапевтического действия;

Принципы дозирования лекарственных средств в зависимости от возраста больного, сопутствующих заболеваний и др.;


Принципы и возможные результаты комбинированного применения лекарственных средств;

Основные виды фармакокинетического взаимодействия;

Основные виды фармакодинамического взаимодействия.

- классификацию побочного действия лекарственных средств;

Основные симптомы острого и хронического отравления лекарственных средств;

Методы профилактики и лечения токсического действия при повторном введении лекарственных средств;

Студент должен уметь:

· определить дозу в зависимости от возраста больного;

· определить значение нарушений функции органов элиминации для действия лекарственного средства;

· отличать главное действие от побочного;

· определить значение лекарственной формы для действия лекарственного средства;

· охарактеризовать возможные фармакокинетические и фармакодинамические аспекты взаимодействия разных групп лекарственных средств при их совместном применении;

· выбрать рациональные комбинации лекарств.

· отличить главное действие от побочного;

· подобрать средства, ослабляющие или устраняющие побочные эффекты лекарственных средств;

· подобрать наиболее эффективный антидот в случае отравления лекарственным средством и оказать первую помощь пострадавшему.

Контрольные вопросы

1. Что изучает фармакодинамика.

2. Понятие о видах фармакотерапии.

3. Понятие о первичной и вторичной фармакологических реакциях.

4. Типы действия лекарственных средств.

5. Виды действия лекарственных средств. Основное и побочное действие лекарственных средств.

6. Взаимодействие лекарственных средств клетками, тканями. Клеточные мишени действия лекарственных средств.

7. Понятие о рецепторах, мессенджерах, ионных каналах.

8. Определение понятия “доза”.

9. Виды терапевтических доз: минимальная, средняя (разовая и суточная), высшая (разовая и суточная), курсовая, ударная, поддерживающая.

10. Зависимость действия лекарственных средств от дозы.

11. Виды кривых “доза - эффект”.

12. Понятия “терапевтическая широта” и “терапевтический индекс”.

13. Дозирование ЛС в зависимости от возраста больных и состояния организма.

14. Комбинированное применение лекарственных средств. Цели и виды комбинированной терапии.

15. Виды лекарственного взаимодействия.

16. Фармацевтическое взаимодействие.

17. Фармакокинетическое взаимодействие ЛС (в процессе всасывания, связывания с белками плазмы крови, метаболизма и выведения).

18. Фармакодинамическое взаимодействие ЛС (в процессе реализации фармакологического эффекта).

19. Виды синергизма, антагонизма .

20. Понятие о хронофармакологии.

21. Явления, наблюдаемые при повторных введениях лекарственных средств: кумуляция, привыкание, тахифилаксия, сенсибилизация, лекарственная зависимость. Дать определение каждому из понятий.

22. Меры профилактики этих явлений.

23. Осложнения, обусловленные генетическими энзимопатиями.

24. Отрицательное действие лекарственных средств: местное раздражающее, ульцерогенное, эмбриотоксическое, тератогенное, фетотоксическое, мутагенное, канцерогенное.

25. Аллергические реакции. Дисбактериоз.


26. Токсическое действие лекарственных средств .

27. Основные синдромы острых отравлений

28. Методы их профилактики и лечения.

Фармакодинамика - раздел фармакологии, изучающий локализацию, механизмы действия, эффекты, виды и типы действия лекарственных веществ на организм.

Фармакологические эффекты – изменения функции органов и систем организма, вызываемые лекарственным веществом.

Локализация действия – место преимущественного действия лекарственного средства в организме.

Первичная фармакологическая реакция представляет собой взаимодействие с циторецепторами – биомакромолекулами, генетически детерминированными для взаимодействия с биологически активными веществами, в том числе с лекарственными средствами.

Вторичная фармакологическая реакция - различные вторичные изменения организма в результате протекания первичной фармакологической реакции.

Виды фармакотерапии:

· этиотропная - вид фармакотерапии, направленный на устранение причины болезни.

· патогенетическая - направлена на устранение или подавление механизмов развития болезни.

· симптоматическая - направлена на устранение или ограничение отдельных клинических проявлений болезни.

· заместительная терапия используется для восполнения дефицита естественных биологически активных веществ.

· профилактическая терапия проводится с целью предупреждения заболеваний.

Виды действия ЛС

В зависимости от локализации фармакологических эффектов:

· местное действие - совокупность изменений, возникающих на месте нанесения лекарственного средства;

· резорбтивное действие совокупность изменений, возникающих после всасывания лекарственного вещества в кровь и распределения по организму;

В зависимости от механизма возникновения эффектов:

· прямое действие – способность лекарственных средств вызывать эффект в месте контакта препарата с клетками различных органов-мишеней;

· косвенное (вторичное) действие - способность лекарственных средств вызывать эффект в органе в результате действия на другой орган.

Частным случаем косвенного действия является рефлекторное действие – это действие, развивающееся в результате взаимодействия лекарственного вещества с чувствительными нервными окончаниями.

По специфичности действия на отдельные органы и ткани:

· избирательное действие - способность лекарственного средства взаимодействовать только с определенным рецептором или ферментом;

· неизбирательное действие – отсутствие у лекарственного средства специфического действия.

По клиническому проявлению:

· основное (главное) действие – терапевтический эффект;

· побочное действие – дополнительные фармакологические эффекты.

Те или иные фармакологические эффекты одного и того же лекарства могут оказаться главными или побочными при различных заболеваниях. Так, при купировании бронхоспазма главным эффектом адреналина является бронхолитический, а при гипогликемической коме – гипергликемический. Побочные эффекты могут нежелательными (неблагоприятными), желательными (благоприятными) и индифферентными.

По обратимости:

· обратимое – обусловлено установлением непрочных физико-химических связей с циторецепторами, характерно для большинства лекарственных средств;

· необратимое – возникает в результате образования прочных ковалентных связей с циторецепторами, характерно для лекарственных средств с высокой токсичностью.

Фармакологические эффекты - изменения в деятельности определенных органов и систем, вызванные лекарственными веществами.

Термин «механизм действия» обозначает способы, которыми лекарственное вещество вызывает тот или иной фармакологический эффект.

Действие лекарственных средств реализуется посредством их взаимодействия с определенными типами рецепторов, действия на ионные каналы, ферменты, транспортные системы и др.

Мишень действия лекарственных веществ – любой биологический субстрат, с которым взаимодействует лекарственное вещество, вызывая фармакологический эффект (рецепторы, нерецепторные молекулы-мишени цитоплазматической мембраны – ионные каналы, неспецифические белки мембран; иммуноглобулины, ферменты, неорганические соединения и др.).

Специфический рецептор – активная группировка макромолекул с идентифицированным эндогенным лигандом, обеспечивающая проявление действия лекарственного вещества.

Типы рецепторов:

1) рецепторы, сопряженные с регуляторными G -белками;

2) рецепторы, сопряженные с ферментами;

3) рецепторы, сопряженные с ионными каналами;

4) рецепторы, регулирующие транскрипцию ДНК.

Первые три типа рецепторов – мембранные, четвертый – внутриклеточный.

Рецепторы, взаимодействующие с G -белками. G -белки, т. е. ГТФ-связывающие белки, локализованы в клеточной мембране и состоят из α-,β-,γ-субъединиц. При взаимодействии лекарственного вещества с рецептором G -белки передают информацию от внеклеточного регуляторного домена на эффекторную систему, используя энергию ГТФ. Эффекты реализуются через систему т. н. вторичных мессенджеров. Вторичные мессенджеры (посредники) - внутриклеточные биологически активные вещества, образующиеся при возбуждении рецепторов и участвующие в интеграции внешних сигналов. Наиболее изучены: цАМФ, цГМФ, Ca 2+ , инозитолтрифосфат (ИТФ), диацилглицерол (ДАГ), NO . Важную роль в реализации фармакологического действия играет аденилатциклаза, которая превращает АТФ во вторичный мессенджер цАМФ. Рецепторы могут как активировать ( RS ), так и ингибировать ( Ri ) аденилатциклазу, соответственно увеличивая или уменьшая продукцию цАМФ. Фосфолипаза С катализирует гидролиз фосфатидилинозитолдифосфата. Продукты реакции - вторичные мессенджеры инозитолтрифосфат и диацилглицерол. Инозитолтрифосфат приводит к высвобождению ионов кальция из эндоплазматического ретикулума, диацилглицерол, активируя протеинкиназу С, освобождает нейромедиаторы, гормоны, секреты экзокринных желез, стимулирует рост и деление клеток.

К рецепторам, которые сопряжены с ферментами, относятся рецепторы инсулина, цитокинов. Рецепторы имеют внеклеточный домен для взаимодействия с экзогенным веществом и внутриклеточный домен – киназу. При возбуждении происходит фосфорилирование регуляторных и структурных клеточных белков.

Рецепторы, сопряженные с ионными каналами, локализованы в синапсах, характеризуются ионной селективностью и чувствительностью к нейромедиаторам.

Ионные каналы плазматических мембран образуют поры, через которые могут проникать в клетку ионы по электрохимическому градиенту. Эффекты лекарственных средств, открывающих ионные каналы, опосредованы изменением внутриклеточной концентрации ионов. Увеличение проницаемости для ионов натрия и кальция приводит

к деполяризации постсинаптической мембраны и эффекту возбуждения, открытие хлорных каналов – к гиперполяризации мембраны и эффекту торможения.

К внутриклеточным рецепторам относятся рецепторы кортикостероидов и половых гормонов. После соединения глюкокортикоида с цитоплазматическими рецепторами комплекс глюкокортикоид-рецептор проникает в ядро и оказывает влияние на экспрессию различных генов.

Для характеристики взаимосвязи лекарственного вещества с рецептором используют такие термины как аффинитет и внутренняя активность.

Аффинитет (сродство) - способность вещества связываться с рецептором, в результате чего происходит образование комплекса «вещество – рецептор».

Внутренняя активность - способность вещества при взаимодействии с рецептором стимулировать его и таким образом вызывать определённые эффекты.

В зависимости от наличия или отсутствия этих свойств лекарственные вещества делятся на:

· агонисты (миметики) - средства, обладающие умеренным аффинитетом и высокой внутренней активностью, их действие связано с прямым возбуждением или повышением функциональной активности рецепторов;

· антагонисты (блокаторы) - вещества, обладающие высоким аффинитетом, но лишенные внутренней активности, препятствуют действию специфических агонистов.

· промежуточное положение занимают агонисты-антагонисты и частичные агонисты.

Антагонизм может быть конкурентным и неконкурентным. При конкурентном антагонизме лекарственное вещество вступает в конкурентное отношение с естественным регулятором (медиатором) за места связывания в специфических рецепторах. Блокада рецептора, вызванная конкурентным антагонистом, может быть снята большими дозами агониста или естественного медиатора. Неконкурентный антагонизм развивается, когда антагонист занимает так называемые аллостерические места связывания на рецепторах (участки макромолекулы, не являющиеся местами связывания агониста, но регулирующие активность рецепторов). Неконкурентные антагонисты изменяют конформацию рецепторов таким образом, что они теряют способность взаимодействовать с агонистами. При этом увеличение концентрации агониста не может привести к полному восстановлению его эффекта.

Хронофармакология - раздел фармакологии, изучающий изменчивость фармакодинамических и кинетических показателей в зависимости от времени введения лекарственного средства (период суток, сезон года и т. д.).

Цель хронофармакологии – оптимизация фармакотерапии путем снижения разовых, суточных, курсовых доз лекарственных средств, уменьшение выраженности побочных эффектов за счет учета времени применения лекарства.

Основные термины хронофармакологии

Биологические ритмы - периодически повторяющиеся изменения характера и интенсивности биологических процессов.

Акрофаза - время, когда исследуемая функция или процесс достигает своих максимальных значений; батифаза - время, когда исследуемая функция или процесс достигает своих минимальных значений; амплитуда - степень отклонения исследуемого показателя в обе стороны от средней; мезор (от лат. m esos - средний, и первой буквы слова ритм) - среднесуточное значение ритма, т. е. среднее значение исследуемого показателя в течение суток.

Периоды биологических ритмов приурочены к определённому времени, например, циркадианные - с периодом 20–28 ч; околочасовые - с периодом 3–20 ч; инфрадианные - с периодом 28–96 ч; околонедельные- с периодом 4–10 сут; околомесячные - с периодом 25–35 сут и т. д.

Основные четыре метода хронофармакологии - имитационный, профилактический, навязывания правильного ритма, определения хроночувствительности.

Имитационный метод - позволяет имитировать нормальные обменные процессы в организме, которые болезнь либо сломала вовсе, либо сделала недостаточно активными.

Метод основывается на установленных закономерностях изменений концентрации определенных веществ в крови и тканях в соответствии с характерным для здорового индивидуума биоритмом. Этот метод успешно используется при терапии различными гормональными препаратами.

Профилактический (превентивный) метод - в основе метода лежит представление о том, что максимальная эффективность лекарственных препаратов совпадает с акрофазой (временем максимального значения) показателей. Это представление основано на законе J. Wilder (1962), согласно которому функция тем слабее стимулируется и легче угнетается, чем исходно она сильнее активирована. Оптимизация сроков введения лекарств основывается на расчете времени, необходимом для создания максимальной концентрации препарата в крови ко времени развития определенного события.

Метод навязывания ритмов - одновременно блокирует патологические, "неправильные" ритмы (десинхронозы), сформированные болезнью, и при помощи лекарств формирует ритмы, близкие к нормальным. На этом подходе основана так называемая пульс-терапия многих хронических заболеваний. Это применение лекарств в точно рассчитанных дозах в не менее точно рассчитанном ритме, который имитирует правильные обменные процессы, повышая качество жизни больного.

Метод определения хроночувствительности

Пример - определение хроночувствительности к антигипертензивному препарату: Его назначают в разные часы суток и проводят клинико-фармакологические исследования в течение нескольких дней для выяснения оптимального времени приема препарата. У больных с повышением АД не только днем, но и ночью, имеют явное преимущество препараты и формы, обладающие пролонгированным действием.

ДОЗИРОВАНИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ.

ПРИНЦИПЫ ИНДИВИДУАЛЬНОГО ДОЗИРОВАНИЯ.

Доза (от греч. d osis- порция) - это количество лекарственного средства, введенного в организм. Дозы обозначают в весовых или объёмных единицах. Также дозы можно выражать в виде количества вещества на 1 кг массы тела (у детей), или на 1 м2 поверхности тела (например, 1 мг/кг, 1 мг/м2).

Жидкие лекарственные средства дозируют столовыми (15 мл), десертными (10 мл) или чайными (5 мл) ложками, а также каплями (1 мл водного раствора = 20 капель, 1 мл спиртового раствора = 40 капель). Дозы некоторых антибиотиков и гормонов выражают в единицах действия (ЕД).

При увеличении дозы лекарственного средства его фармакологический эффект усиливается и через определённое время достигает максимальной (постоянной) величины (Еmax). Поэтому по арифметической шкале доз зависимость «доза-эффект» имеет гиперболический характер (градуальная зависимость). По логарифмической шкале доз эта зависимость выражается S-образной кривой (рис. 4).

Рис. 4 . Зависимость доза-эффект при разных шкалах доз.

А-при арифметической шкале доз(гиперболическая зависимость):

Б-при логарифмической шкале доз (S -образная зависимость).

По величине дозы, вызывающей эффект определённой величины, судят об активности вещества. Обычно для этих целей на графике зависимости доза–эффект определяют дозу, вызывающую эффект, равный 50% от максимального, и обозначают её как ЭД50 (ED50). Такие дозы лекарственных средств используют для сравнения их активности. Чем меньше ЭД50, тем выше активность вещества (если ЭД50 вещества А в 10 раз меньше, чем ЭД50 вещества В, вещество А в 10 раз активнее).

Кроме активности лекарственные средства сравнивают по эффективности (определяется величиной максимального эффекта, Еmax). Если максимальный эффект вещества А в 2 раза больше максимального эффекта вещества В, вещество А в 2 раза эффективнее.

От дозировки зависит эффективность лечения и безопасность больного. Средние терапевтические дозы определены для большинства больных, но индивидуальная чувствительность зависит от таких факторов, как пол, возраст, масса тела, скорость метаболизма, состояние желудочно-кишечного тракта, кровообращения, печени, почек, пути введения, состава и количества пищи, одновременного применения других препаратов.

Различают терапевтические, токсические и летальные дозы.

Терапевтические дозы : минимальные действующие, средние терапевтические и высшие терапевтические.

Минимальная действующая доза (пороговая доза) вызывает минимальный терапевтический эффект. Обычно она в 2–3 раза меньше средней терапевтической дозы.

Средняя терапевтическая доза - диапазон доз, в которых лекарственное средство оказывает оптимальное профилактическое или лечебное действие у большинства больных;

Максимальная терапевтическая доза - максимальное количество лекарственного средства, не оказывающее токсическое действие.

Средние терапевтические дозы оказывают у большинства больных необходимое фармакотерапевтическое действие.

Разовая доза - количество лекарственного вещества на один приём, суточная доза - количество лекарственного вещества, которое больной принимает в течение суток.

Ударная доза - доза, превышающая среднюю терапевтическую дозу. С неё обычно начинают лечение противомикробными средствами (антибиотиками, сульфаниламидами), чтобы быстро создать высокую концентрацию вещества в крови. После достижения определённого терапевтического эффекта назначают поддерживающие дозы .

Курсовая доза – доза на курс лечения (при длительном применении лекарственного средства).

Высшие терапевтические дозы - предельные дозы, превышение которых может привести к развитию токсических эффектов. Их назначают, если применение средних доз не оказывает желаемого действия. Для ядовитых и сильнодействующих веществ в законодательном порядке установлены высшие разовые и высшие суточные дозы.

Токсические дозы - дозы, оказывающие токсическое действие на организм.

Летальные дозы (от лат. letum - смерть) - дозы, вызывающие смертельный исход.

Широта терапевтического действия - диапазон доз от минимальной до максимальной терапевтической. Чем она больше, тем безопаснее применение ЛС.

Терапевтический индекс - отношение эффективной дозы ЭД50 к летальной дозе ДЛ50.

Оптимизация дозирования лекарственных веществ

Для достижения оптимального терапевтического эффекта лекарственного средства необходимо поддерживать его постоянную терапевтическую концентрацию в крови, которая обозначается как стационарная концентрация (Сss ) . Наиболее простой способ достижения стационарной концентрации лекарственного вещества - внутривенное капельное введение.

Однако обычно вещества назначают отдельными дозами через определённые интервалы времени (наиболее часто внутрь). В таких случаях концентрация вещества в крови не остаётся постоянной, а меняется относительно стационарного уровня, причём эти колебания не должны выходить за пределы диапазона терапевтических концентраций. Поэтому после назначения нагрузочной дозы, обеспечивающей быстрое достижение стационарной терапевтической концентрации, вводят меньшие по величине поддерживающие дозы, направленные на обеспечение лишь небольших колебаний концентрации вещества в крови относительно его стационарного терапевтического уровня. Нагрузочную и поддерживающую дозы лекарственного средства для каждого конкретного больного можно рассчитать по формулам:

Нагрузочная доза (ударная доза) определяется исходя из кажущегося объема распределения и клиренса : НД = Vd х Clt, где Vd –кажущийся объем распределения, Clt - общий клиренс.

Поддерживающая доза составляет ту часть полной терапевтической дозы, которая элиминируется в течение суток. Она позволяет сохранять концентрацию препаратов в крови на постоянном уровне, несмотря на кумуляцию.

Кроме того, при введении веществ внутрь учитывают их биодоступность.

Особенности дозирования у пожилых

· для пациентов старше 60 лет начальная доза препаратов, угнетающих центральную нервную систему, а также сердечных гликозидов и мочегонных средств должна быть уменьшена до 1/2 общепринятой дозы для взрослого человека.

· дозы других сильнодействующих препаратов должны составлять 2/3 от доз, назначаемых больным среднего возраста. Затем постепенно увеличивают дозу до достижения необходимого терапевтического эффекта, после чего уменьшают до поддерживающей, которая, как правило, ниже, чем для пациентов среднего возраста.

· следует учитывать также выраженность функциональных изменений старческого организма, прежде всего печени и почек, индивидуальную переносимость и чувствительность к тому или иному препарату.

! Подбор доз людям пожилого и старческого возраста проводится врачом индивидуально.

Особенности дозирования в педиатрической практике. В педиатрической практике при назначении различных препаратов их принято дозировать на 1 кг массы, на 1 м2 поверхности тела или на год жизни ребенка. Государственная фармакопея рекомендует рассчитывать дозы для детей с учетом возраста. Доза лекарства для взрослого принимается за единицу и ребенку дается определенная часть дозы взрослого. Ребенку до 1 года назначают 1/24-1/12 дозы взрослого, в 1 год - 1/12, в 2 года - 1/8, в 4 года - 1/6, в 6 лет - 1/4, в 7 лет - 1/3, в 14 лет - 1/2, в 15-16 лет - 3/4 дозы взрослого.

При расчете дозы для детей соотношение массы тела учитывается по формуле Г. Ивади, 3. Дирнер (1966): если масса тела ребенка до 20 кг, то она умножается на 2, если более 20 кг, то к массе тела, выраженной в килограммах, прибавляется 20. Полученная величина показывает, какой процент от дозы взрослого, принятой за 100 %, следует назначить ребенку. Однако необходимо подчеркнуть, что ни один из предложенных к настоящему времени методов расчета детских доз не является совершенным. Эти методики могут служить лишь исходными при подборе дозы лекарственного средства для ребенка.

КОМБИНИРОВАННОЕ ПРИМЕНЕНИЕ И ВЗАИМОДЕЙСТВИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Комбинированное применение лекарственных средств – одновременное введение в организм нескольких лекарственных средств или применение их друг за другом через короткие промежутки времени.

Целью комбинированного применения лекарственных средств является повышение эффективности и/или безопасности лечения.

При комбинированной терапии между лекарственными средствами могут возникать взаимодействия, изменяющие конечный фармакологический эффект. Комбинации лекарственных средств могут быть рациональными, нерациональными и потенциально опасными. В результате рациональных комбинаций повышается эффективность (комбинация сальбутамола с эуфиллином приводит к усилению бронхолитического эффекта) или безопасность лекарственной терапии (комбинация ацетилсалициловой кислоты и мизопростола снижает риск возникновения язвы желудка). В результате нерациональных комбинаций снижается эффективность и/или повышается частота развития побочных эффектов, часто опасных для жизни. Комбинации, приводящие к повышению риска развития неблагоприятных побочных реакций, называют потенциально опасными .

Лекарственное взаимодействие – качественное и количественное изменение эффекта одного лекарственного средства под влиянием другого.

Виды лекарственного взаимодействия:

· Фармацевтическое

· Фармакокинетическое

· Фармакодинамическое

Фармацевтическое взаимодействие возникает до введения лекарственного средства в организм, т. е. на этапах изготовления, хранения или введения препаратов в одном шприце или в одной инфузионной системе.

В результате происходит образование неактивных, нестабильных или токсичных соединений, ухудшение растворимости лекарственных средств, коагуляция коллоидных систем, расслоение эмульсий, отсыревание и расплавление порошков и др. Образуется осадок, изменяются цвет, запах и консистенция лекарства (табл. 6.1).

Таблица 6.1. Примеры фармацевтической несовместимости

Взаимодействующие лекарственные средства

Механизмы несовместимости

Цианокобаламин

Тиамин, рибофлавин, пиридоксин, кислоты никотиновая, фолиевая и аскорбиновая

Гепарин

Гидрокортизон

Образование осадка в растворе для инъекций

Антибиотики группы пенициллина

Канамицин, гентамицин, линкомицин

Образование осадка в растворе для инъекций

Фармакокинетический вид взаимодействия возникает на этапах всасывания, распределения, метаболизма и выведения лекарственных средств. В результате фармакокинетического взаимодействия обычно изменяется концентрация активной формы лекарственного вещества в крови и тканях, и, как следствие, конечный фармакологический эффект.

Фармакокинетическое взаимодействие на уровне всасывания

При одновременном нахождении нескольких лекарственных средств в просвете желудка и тонкого кишечника могут изменяться степень и скорость всасывания или оба показателя одновременно.

Образование хелатных соединений

Изменение рН желудочного содержимого

Влияние на нормальную микрофлору кишечника

Повреждение слизистой кишечника

Изменение моторики ЖКТ

Влияние на активность гликопротеина-Р

Фармакокинетическое взаимодействие лекарственных средств на уровне связи с белками плазмы крови имеет клиническое значение в случаях, когда лекарственное средство обладает следующими свойствами: а) малый объем распределения (менее 35 л); б) связь с белками плазмы крови более чем на 90%.

Фармакокинетическое взаимодействие ЛС в процессе биотрансформации

В организме большинство ЛС подвергается неспецифическому окислению в основном ферментами системы Р-450. На функциональное состояние данной системы оказывают влияние следующие факторы:

Пол , возраст ;

- состояние окружающей среды ;

- качественный и количественный состав пищи;

Курение табака , применение алкоголя;

- применение лекарственных средств – ингибиторов или индукторов цитохрома Р450.

Фармакокинетическое взаимодействие на уровне выведения

Почки являются наиболее важным органом, участвующим в выведении лекарственных средств. Поэтому для экскреции многих лекарственных средств важную роль играет рН мочи. Уровень рН определяет степень реабсорбции слабых кислот и оснований в почечных канальцах. При низких значениях рН (в кислой среде) увеличивается выведение слабощелочных веществ, поэтому их действие ослабляется и укорачивается. При значениях рН мочи, соответствующих щелочной среде, ускоряется выведение слабых кислот и их эффекты снижаются. Таким образом, вещества, изменяющие рН мочи, могут влиять на скорость выведения из организма слабокислых и слабощелочных лекарственных средств. Некоторые вещества, такие как натрия гидрокарбонат и аммония хлорид, применяют для ускорения выведения из организма слабых кислот и слабых оснований соответственно (табл. 6.2).

Таблица 6.2. Лекарственные средства, канальцевая реабсорбция которых угнетается при изменениях рН мочи

определяется как способность лекарственных средств взаимодействовать на уровне механизма действия и фармакологических эффектов. Выделяют два основных вида фармакодинамического взаимодействия – синергизм и антагонизм.

Синергизм - однонаправленное действие двух или нескольких лекарственных средств, при котором развивается фармакологический эффект более выраженный, чем у каждого вещества в отдельности.

Виды синергизма :

сенситизирующее действие

аддитивное действие

суммация

потенцирование.

Сенситизирующее действие – взаимодействие двух лекарственных средств, при котором одно из средство повышает чувствительность организма к действию другого и усиливает его эффект (витамин С + препараты железа = увеличение концентрации железа в крови).

Аддитивное действие –взаимодействие двух лекарственных средств, при котором эффект совместного действия препаратов ниже, чем сумма индивидуальных эффектов каждого лекарственного средства, но выше, чем действие каждого из них в отдельности

Суммирование – взаимодействие лекарственных средств, при котором выраженность эффекта комбинированного применения препаратов равна сумме эффектов отдельных препаратов.

Потенцирование - взаимодействие двух лекарственных средств, при котором эффект действия двух веществ больше суммы эффектов каждого из веществ (действие препаратов А + В> действия препарата А + действия препарата В).

Антагонизм - уменьшение или полное устранение фармакологического эффекта одного лекарственного средства другим при их совместном применении. Явление антагонизма используют при лечении отравлений и для устранения нежелательных реакций на ЛС.

Виды антагонизма :

· физический

· химический

· физиологический

· рецепторный

Физический антагонизм определяется физическими свойствами препаратов и возникает в результате физического их взаимодействия: адсорбции одного лекарственного средства на поверхности другого, в результате чего образуются неактивные или плохо всасывающиеся комплексы.

Химический антагонизм возникает в результате химической реакции между веществами, в результате которой образуются неактивные соединения или комплексы. Антагонисты, действующие подобным образом, получили название антидоты. Например, применение унитиола при передозировке или отравлении сердечными гликозидами.

Физиологический или функциональный антагонизм развивается при введении двух препаратов вызывающих разнонаправленное действие на один и тот же вид физиологических эффектов.

Рецепторный антагонизм связан с взаимодействием различных лекарственных средств на один и тот же рецептор. При этом препараты оказывают разнонаправленные эффекты.

Рецепторный антагонизм бывает двух видов:

· конкурентный – связывание антагониста с активным центром и конечный эффект зависит от дозы агониста и антагониста;

· неконкурентный – связывание антагониста с определенным участком рецептора, но не с активным центром и конечный эффект зависит только от концентрации антагониста.

Фармакодинамическое взаимодействие может быть прямым , когда оба лекарственных средства действуют на один и тот же биосубстрат и косвенным , реализуемым с включением разных биосубстратов. Осуществляется на уровне эффекторных клеток, органов и функциональных систем.

ПОВТОРНОЕ ПРИМЕНЕНИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ.

ПОБОЧНОЕ И ТОКСИЧЕСКОЕ ДЕЙСТВИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ.

В современной фармакотерапии особое значение приобретает проблема безопасного применения лекарственных средств . При повторных введениях лекарственных средств могут происходить количественные (увеличение или уменьшение) и качественные изменения фармакологического эффекта.

Кумуляция - накопление в организме лекарственных средств или вызываемых им эффектов.

Материальная кумуляция - увеличение в крови и/или тканях концентрации Л C после каждого нового введения по сравнению с предыдущей концентрацией. Накапливаться при повторных введениях могут лекарственных средств, медленно инактивируемые и медленно выводимые из организма, а также лекарственных средств, прочно связывающиеся с белками плазмы крови или депонирующиеся в тканях.

Функциональная кумуляция - усиление эффекта лекарственных средств при повторных введениях при отсутствии повышения его концентрации в крови и/или тканях. Этот вид кумуляции возникает, например, при повторных приёмах алкоголя. При развитии алкогольного психоза бред и галлюцинации развиваются в то время, когда этиловый спирт уже метаболизировался и не определяется в организме.

Привыкание - уменьшение фармакологического эффекта лекарственного средства при его повторных введениях в той же дозе. При развитии привыкания для достижения прежнего эффекта необходимо увеличивать дозу лекарственного средства. В основе приобретенного привыкания лежат фармакокинетические и фармакодинамические механизмы.

Фармакокинетические механизмы привыкания

- Нарушение всасывания

- Изменение активности ферментов метаболизма

Фармакодинамические механизмы привыкания

- Десенситизация рецепторов:

- Снижение количества рецепторов (даунрегуляция)

- Уменьшение выделения нейромедиаторов

- Снижение возбудимости чувствительных нервных окончаний

- Включение компенсаторных механизмов регуляции

Тахифилаксия - быстрое развитие привыкания при повторных введениях препарата через короткие промежутки времени (10–15 мин). Пример. Адреномиметик непрямого действия эфедрин вытесняет норадреналин из гранул в адренергических синапсах и тормозит его нейрональный захват. Это сопровождается опустошением гранул и ослаблением гипертензивного влияния.

Лекарственная зависимость (пристрастие) - непреодолимая потребность (стремление) в постоянном или периодически возобновляемом приёме определённого лекарственного средства или группы веществ.

Психическая лекарственная зависимость - резкое ухудшение настроения и эмоциональный дискомфорт, ощущение усталости при лишении препарата (при применении кокаина, галлюциногенов).

Физическая лекарственная зависимость характеризуется не только эмоциональным дискомфортом, но и возникновением синдрома абстиненции (применение опиоидов, барбитуратов).

Абстинентный синдром (лат. abstinentia - воздержание) - комплекс психопатологических, неврологических и соматовегетативных расстройств по типу синдрома отдачи (нарушения функций противоположны тем, которые вызывает наркотик).

Синдром отдачи - суперкомпенсация функций с обострением болезни, обусловленный растормаживанием регуляторных процессов или отдельных реакций после прекращения приема лекарственных средств, подавляющих эти процессы и реакции.

Синдром отмены - недостаточность функций органов и клеток после прекращения приема лекарственных средств, подавляющих данные функции (после отмены глюкокортикоидов).

Идиосинкразия (греч. idios - своеобразный, syncrasis - смешение) - атипичная реакция на лекарственные средства, примененные в терапевтических дозах.

К наследственным дефектам относится недостаточность глюкозо-6-фосфатдегидрогеназы, при которойприем лекарственных средств со свойствами сильных окислителей, транспортируемых эритроцитами, ведет к развитию массивного гемолиза и гемолитического криза. В число опасных препаратов входят некоторые местные анестетики, кислота ацетилсалициловая, парацетамол, сульфаниламиды, противомалярийные средства хинин, хлорохин и синтетический витамин К (викасол). Недостаточность псевдохолинэстеразы крови нарушает гидролиз миорелаксанта дитилина. При этом паралич дыхательной мускулатуры и остановка дыхания пролонгируются с 6 - 8 мин до 2 - 3 ч.

Побочные эффекты при применении препаратов могут развиваться вследствие функциональных или структурных изменений в органах и физиологических системах. Осложнения терапии при этом, обусловленные качеством ЛС, его химическими или фармакологическими характеристиками, сопутствующими заболеваниями, режимом дозирования, могут быть как кратковременными, так и длительными.

Побочный эффект – любой непреднамеренный эффект фармацевтического продукта, который развивается при использовании в обычных дозах и который обусловлен его фармакологическим действием.

Нежелательная побочная реакция - вредный и непредвиденный эффект вследствие применения лекарства в терапевтических дозах с целью профилактики, лечения, диагностики или изменения физиологической функции человека.

Нежелательное явление – любое неблагоприятное событие, которое возникает на фоне применения лекарственного средства и которое не обязательно имеет причинно-следственную связь с его применением.

Побочные эффекты вызывают практически все известные лекарственные средства. В большинстве случаев они известны и ожидаемы, и обычно исчезают после прекращения приёма или снижения дозы (или скорости введения) препарата.

Классификация НПР по ВОЗ

Тип А - НПР, обусловлены фармакологическими свойствами или токсичностью лекарственного средства и/или его метаболитов:

Зависят от концентрации лекарственного средства (дозозависимы) и/или от чувствительности молекул-мишеней;

Предсказуемы;

Наиболее распространены (до 90% всех НПР);

Возможно дальнейшее применение лекарственного средства после коррекции дозы.

Тип В – реакции гиперчувствительности (аллергические , псевдоаллергические, генетически детерминированные):

Непредсказуемы;

Не зависят от дозы;

Часто имеют серьезные последствия;

Обычно требуется прекращение приема лекарственного средства.

В основе аллергических реакций , возникающих при применении лекарственных средств, лежат иммунологические механизмы, связанные с развитием сенсибилизации. Лекарственные средства в этом случае выступают как аллергены . Аллергические реакции не зависят от дозы вводимого вещества и разнообразны по своему характеру и тяжести: от лёгких кожных проявлений до анафилактического шока. В основе развития псевдоаллергических реакций нет иммунного механизма, реакции развиваются вследствие способности лекарственного средства вызывать прямую дегрануляцию тучных клеток и базофилов, активировать систему комплемента и др. Реакции идиосинкразии представляют собой атипичные реакции на лекарственные средства, чаще всего связанные с генетическими особенностями организма (см. выше).

Тип С – реакции, развивающиеся при длительной терапии (привыкание, зависимость, синдром отмены, синдром отдачи).

Тип D - отсроченные НПР (тератогенность, мутагенность, канцерогенность).

ЛС, назначаемые женщинам во время беременности , могут оказывать отрицательное влияние на развитие эмбриона или плода. С точки зрения потенциальной опасности лекарственного воздействия на эмбрион и плод выделяют 5 критических периодов:

- предшествующий зачатию;

- с момента зачатия до 11 дня;

С 11 дня до 3 нед.;

С 4 по 9 нед.;

С 9 нед. до родов.

Эмбриотоксическое действие - нарушение развития эмбриона вследствие действия лекарственного средства на зиготу и бластоцист, находящиеся в просвете фаллопиевых труб, а также на процесс имплантации зародыша в матку.

Тератогенное действие (от греч. teras- урод) - повреждающее влияние лекарственного средства на дифференцировку тканей и клеток, приводящее к рождению детей с разными аномалиями. Наиболее опасно в период с 4 по 8 неделю беременности (период формирования скелета и закладки внутренних органов).

Фетотоксическое действие - следствие влияния лекарственного средства на плод в период, когда уже сформированы внутренние органы и физиологические системы.

Мутагенное действие (от лат. mutatio - изменение и греч. g enos - род) - способность лекарственного средства вызывать изменение генетического аппарата в женских и мужских половых клетках на стадии их формирования и в клетках эмбриона.

Канцерогенное действие (от лат. cancer - рак) - способность лекарственного средства вызывать развитие злокачественных новообразований.

Токсическое действие лекарственного средства развивается, как правило, при поступлении в организм токсических доз вещества (при передозировке). При абсолютной передозировке (введение лекарственного средства с абсолютным превышением разовых, суточных и курсовых доз) в крови и тканях создаются чрезмерно высокие его концентрации. Токсическое действие возникает также при относительной передозировке лекарственного средства, возникающей при назначении средних терапевтических доз больным, у которых снижена метаболическая функция печени или выделительная функция почек, при длительном лечении лекарственными средствами, способными к кумуляции. В этих случаях лекарственное вещество может оказывать токсическое действие на определённые органы или физиологические системы.

ТЕСТОВЫЕ ЗАДАНИЯ

Укажите один правильный ответ:

I . Необратимое взаимодействие лекарственных веществ с рецептором обеспечивают

1) гидрофильные связи

2) ван-дер-ваальсовы связи

3) ковалентные связи

4) ионные связи

II . Аффинитет - это

1) способность вещества связываться со специфическими рецепторами

2) доза вещества, вызывающая специфический эффект

3) способность вещества вызывать эффект при взаимодействии с рецепторами

III . Вещества, обладающие аффинитетом и внутренней активностью, называют

1) агонистами

2) антагонистами

IV . Способность веществ связываться со специфическими рецепторами обозначается как

1) агонизм

2) аффинитет

3) внутренняя активность

V . Фармакодинамика изучает

1) распределение веществ в организме

2) виды действия

3) биотрансформацию

4) фармакологические эффекты

5) локализацию действия

VII . Как определяется терапевтический индекс препарата

1) отношением летальной дозы к эффективной

2) отношением нагрузочной дозы к поддерживающей

3) отношением минимальной терапевтической дозы к токсической

4) отношением эффективной дозы к летальной

VIII . Широта терапевтического действия это

1) диапазон доз от ударной до высшей

2) от минимальной до высшей

3) от средней до токсической

IX . Курсовая доза это

1)суммарная доза на весь период лечения

2) быстро создает высокую концентрацию ЛС в крови

3) предельная доза на прием в течение суток

X . К фармакокинетическим типам взаимодействия относятся

1) “в одном шприце”

2) влияние одного лекарственного средства на всасывание другого

3) аддитивность

XI . Потенцирование действия ЛС - это

XII . Аддитивное действие - ЭТО

1) совместный эффект двух веществ равен сумме их эффектов

2) совместный эффект двух веществ превышает сумму их эффектов

XIII . Ослабление эффекта при совместном действии лекарственных препаратов называется

1) антагонизм

2) идиосинкразия

3) потенцирование

4) тератогенность

5) мутагенность

XIV . Синергизм - ЭТО

1) простое суммирование эффектов

2) взаимное потенцирование эффектов

3) взаимное ослабление эффектов

4) ослабление эффекта одного ЛС под действием другого

XV . Лекарственные средства комбинируют с целью

1) уменьшения проявления отрицательных эффектов лекарственных средств

2) ускорения выведения из организма одного из лекарственных средств

3) повышения эффекта фармакотерапии

4) повышения концентрации одного из лекарственных средств в крови

XVI . К фармакодинамическим типам взаимодействия

Относятся

1) влияние одного лекарственного средства на всасывание другого

2) влияние лекарственного средства на метаболические превращения других средств

3) “в одном шприце”

4) потенцирование

5) рецепторный антагонизм

6) медиаторный антагонизм

XVII . Фармацевтическая несовместимость связана С

1) образованием осадка

2) образованием нерастворимых веществ

3) нарушением метаболизма

4) нарушением выведения

5) нарушением всасывания при взаимодействии в ЖКТ нескольких лекарственных веществ

XVIII. Наибольшая вероятность тератогенного действия

Лекарственных препаратов существует при применении

1) в последние месяцы беременности

2) в первый триместр беременности

3) между 3-4 месяцами беременности

4) между 5-6 месяцами беременности

5) между 5-6 месяцами беременности

6) в период грудного вскармливания

XIX . Накопление вещества В ОРГАНИЗМЕ при повторных

введениях

1) потенцирование

2) тахифилаксия

3) идиосинкразия

4) кумуляция

XX . Необычная реакция на первое введение лекарственного

Вещества

1) идиосинкразия

2) сенсибилизация

3) привыкание

4) потенцирование

5) тахифилаксия

XXI . Тахифилаксия это

1) быстрое привыкание

2) необычная реакция на введение вещества

3) накопление вещества в организме

4) повышение чувствительности к веществу при повторных введениях

XXII . Что характерно для побочных эффектов аллергической

Природы:

1) относится к фармакологическому действию лекарственных веществ

2) возникают при введении веществ в любой дозе

3) возникают при любом пути введения

4) возникают при первом введении лекарственного вещества

5) возникают при повторном введении лекарственного вещества

В фармакологии различают следующие виды действия лекарственных веществ:

· Местное действие. Это действие лекарственного вещества на месте его приложения до всасывания в кровь. Например, действие обволакивающих средств, местноанестезирующее (обезболивающее) действие при нанесении растворов местных анестетиков на слизистые оболочки. С целью местного действия применяются различные лекарственные формы: присыпки, примотки, мази, растворы и др. Местное действие в чистом виде встречается, однако редко, так как часть вещества все же всасывается в кровь или вызывает рефлекторные реакции.

· Резорбтивное действие. Это действие лекарств после всасывания в кровь и проникновения в ткани, независимо от путей его введения в организм. Так действует большинство лекарств.

· Общеклеточное действие. Это действие лекарственных веществ, направленное на все клетки организма.

· Избирательное действие связано со способностью лекарств накапливаться в отдельных тканях или с неодинаковой чувствительностью клеточных рецепторов к различным лекарствам. Например, сердечные гликозиды влияют избирательно на сердце, а нейролептики - на центральную нервную систему, некоторые курареподобные вещества вызывают избирательную блокаду холинорецепторов двигательных нервов и расслабление скелетной мускулатуры, причем в терапевтических дозах на другие рецепторы почти не оказывают действия (например, дитилин).

· Общее действие - это, когда лекарственные вещества не имеют выраженного избирательного действия (антибиотики).

· Прямое действие лекарства проявляется в тканях, с которыми оно непосредственно контактирует. Такое действие иногда называют первичной фармакологической реакцией.

· Косвенное действие является ответом на первичную фармакологическую реакцию других органов. Например, сердечные гликозиды, усиливая сокращения сердца (прямое действие), улучшают кровообращение и функцию других органов, например, почек и печени (косвенное действие).

· Рефлекторное действие является разновидностью косвенного действия, в котором участвует нервная система (рефлекторная дуга). Оно может возникать при резорбтивном и местном действии лекарств. Например, внутривенное введение цититона рефлекторно возбуждает дыхание; горчичник, приложенный к коже, рефлекторно улучшает функцию внутренних органов.

· Главное и побочное действия. Под главным понимают основное, желательное действие лекарства, на которое рассчитывает врач. Побочное действие является, как правило, нежелательным, вызывающим осложнения. Например, главным для морфина является обезболивающее действие, а его способность вызывать эйфорию и наркоманию расценивается как существенный недостаток. Побочное действие может носить положительный характер. Например, кофеин оказывает стимулирующее действие на центральную нервную систему, а также усиливает работу сердца. Побочное действие может носить и нежелательный (отрицательный) характер. Некоторые слабительные средства при своем действии вызывают боли в кишечнике. Для некоторых лекарств, обладающих многосторонними фармакологическими свойствами, главное и побочное действия могут меняться местами в зависимости от конкретной цели использования такого лекарства.


· Обратимое действие - это временный фармакологический эффект, который прекращается после выведения лекарственного вещества из организма или после его разрушения. Например, после наркоза функция центральной нервной системы полностью восстанавливается.

· Необратимое действие выражается в глубоких структурных нарушениях клеток и их гибели, вызываемых, например, прижиганием бородавок нитратом серебра, или необратимое ингибирование фермента ацетилхолинэстеразы фосфорорганическими соединениями.

Вопросы для самоконтроля

2. Связь фармакологии с другими науками.

3. История развития науки.

4. Научные направления фармакологии.

5. Источники и пути получения лекарственных веществ.

6. Общие закономерности взаимодействия лекарственных веществ с организмом.

7. Реактивность организма, ее роль в развитии болезни.

8. Энтеральные пути введения лекарственных средств и их сравнительная характеристика.

9. Парентеральные пути введения лекарственных веществ и их сравнительная характеристика.

10. Преимущества и недостатки энтеральных и парентеральных путей введения.

11. Какие вопросы изучает раздел общей фармакологии фармакокинетика.

12. Механизмы всасывания лекарственных веществ из желудка и кишечника.

13. Что характерно для пассивной диффузии лекарства через мембраны клеток.

14. Что характерно для активного транспорта лекарства через мембраны клеток.

15. Распределение лекарственных веществ в организме.

16. .Понятие о биотрансформации.

17. Механизмы биотрансформации лекарственных веществ в печени.

18. Пути выведения лекарственных веществ из организма.

19. Что такое биодоступность и чем она определяется.

20. Какие вопросы изучает раздел общей фармакологии фармакодинамика.

21. Основные мишени действия лекарственных веществ.

22. Виды действия лекарственных веществ.

Список использованной литературы

1. Рабинович М.И. Общая фармакология: Учебное пособие. 2-е изд., испр. и доп. / М.И.Рабинович, Г.А. Ноздрин, И.М. Самородова, А.Г. Ноздрин – СПб.: Издательство «Лань», 2006. – 272 с.

2. Седов Ю.Д. Техника введения лекарственных веществ животным / Ю.Д. Седов. – Ростов н /Д: Феникс, 2014. – 93 с.

3. Субботин В.М. Ветеринарная фармакология / В.М.Субботин, И.Д. Александров – М.: КолосС, 2004. – 720 с.

4. Соколов В.Д. Фармакология / В.Д. Соколов - СПб.: Издательство «Лань», 2010. – 560 с.

5. Толкач, Н.Г. Ветеринарная фармакология / Н.Г. Толкач, И.А. Ятусевич, А.И. Ятусевич, В.В. Петров. – Минск: ИВЦ Минфина, 2008. – 685 с.

6. Фармакология. – М.: ВИНИТИ, 2000 – 2009.

7. Харкевич Д.А. Фармакология: Учебник / Д.А. Харкевич. - 9-е изд., перераб., доп. и испр. - М.: ГЭОТАР - Медиа, 2006. - 736 с.

1. Введение 3

2. История развития фармакологии 5

3. Научные направления фармакологии 10

4. Источники и пути получения лекарственных веществ 12

5. Общие закономерности взаимодействия лекарственных

веществ с организмом 15

6. Реактивность организма, ее роль в развитии болезни и

реакции на лекарство 17

7. Пути введения лекарственных средств в организм 17

8. Фармакокинетика 22

8.1. Всасывание лекарственных веществ 23

8.2. Распределение лекарственных веществ в организме 27

8.3. Биотрансформация лекарств в организме 29

8.4. Выведение лекарственных веществ из организма 34

8.5. Понятие о биологической доступности лекарств 37

9. Фармакодинамика 39

9.1. Основные мишени действия лекарственных веществ 40

9.2. Виды действия лекарственных веществ 53

10. Вопросы для самоконтроля 55

11. Список использованной литературы 56

Действие вещества, возникающее в месте его приложения, называют местным. Например, обволакивающие средства покрывают слизистую оболочку, препятствуя раздражению окончаний афферентных нервов. При поверхностной анестезии нанесение местного анестетика на слизистую оболочку ведет к блоку окончаний чувствительных нервов только в месте нанесения препарата. Однако истинно местное действие наблюдается крайне редко, так как вещества могут либо частично всасываться, либо оказывать рефлекторное влияние.

Действие вещества, развивающееся после его всасывания, поступления в общий кровоток и затем в ткани, называют резорбтивным . Резорбтивное действие зависит от путей введения лекарственных средств и их способности проникать через биологические барьеры.

При местном и резорбтивном действии лекарственные средства оказывают либо прямое, либо рефлекторное влияние. Первое реализуется на месте непосредственного контакта вещества с тканью. При рефлекторном воздействии вещества влияют на экстероили интероцепторы и эффект проявляется изменением состояния либо соответствующих нервных центров, либо исполнительных органов. Так, использование горчичников при патологии органов дыхания рефлекторно улучшает их трофику (эфирное горчичное масло стимулирует экстероцепторы кожи). Препарат лобелин, вводимый внутривенно, оказывает возбуждающее влияние на хеморецепторы каротидного клубочка и, рефлекторно стимулируя центр дыхания, увеличивает объем и частоту дыхания.

Основная задача фармакодинамики - выяснить, где и каким образом действуют лекарственные средства, вызывая те или иные эффекты. Благодаря усовершенствованию методических приемов эти вопросы решаются не только на системном и органном, но и на клеточном, субклеточном, молекулярном и субмолекулярном уровнях. Так, для нейротропных средств устанавливают те структуры нервной системы, синаптические образования которых обладают наиболее высокой чувствительностью к данным соединениям. Для веществ, влияющих на метаболизм, определяется локализация ферментов в разных тканях, клетках и субклеточных образованиях, активность которых изменяется особенно существенно. Во всех случаях речь идет о тех биологических субстратах-«мишенях», с которыми взаимодействует лекарственное вещество.

В качестве «мишеней» для лекарственных средств служат рецепторы, ионные каналы, ферменты, транспортные системы и гены.

Рецепторами называют активные группировки макромолекул субстратов, с которыми взаимодействует вещество. Рецепторы, обеспечивающие проявление действия веществ, называют специфическими.

Принципы действия агонистов на процессы, контролируемые рецепторами. I - прямое влияние на проницаемость ионных каналов (Н-холинорецепторы, ГАМКА- рецепторы); II - опосредованное влияние (через G-белки) на проницаемость ионных каналов или на активность ферментов, регулирующих образование вторичных передатчиков (М- холинорецепторы, адренорецепторы); III - прямое влияние на активность эффекторного фермента тирозинкиназы (инсулиновые рецепторы, рецепторы ряда факторов роста); IV - влияние на транскрипцию ДНК (стероидные гормоны, тиреоидные гормоны).

Выделяют следующие 4 типа рецепторов

I. Рецепторы, осуществляющие прямой контроль за функцией ионных каналов. К этому типу рецепторов, непосредственно сопряженных с ионными каналами, относятся Н-холинорецепторы, ГАМК А -рецепторы, глутаматные рецепторы.

II. Рецепторы, сопряженные с эффектором через систему «G-белки - вторичные передатчики» или «G-белки-ионные каналы». Такие рецепторы имеются для многих гормонов и медиаторов (М-холинорецепторы, адренорецепторы).

III. Рецепторы, осуществляющие прямой контроль функции эффекторного фермента. Они непосредственно связаны с тирозинкиназой и регулируют фосфорилирование белков. По такому принципу устроены рецепторы инсулина, ряда факторов роста.

IV. Рецепторы, контролирующие транскрипцию ДНК. В отличие от мембранных рецепторов I-III типов, это внутриклеточные рецепторы (растворимые цитозольные или ядерные белки). С такими рецепторами взаимодействуют стероидные и тиреоидные гормоны.

Весьма плодотворным оказалось изучение подтипов рецепторов (табл. II.1) и связанных с ними эффектов. К числу первых исследований такого рода относятся работы по синтезу многих β-адреноблокаторов, широко применяемых при различных заболеваниях сердечно-сосудистой системы. Затем появились блокаторы гистаминовых Н 2 -рецепторов - эффективные средства для лечения язвенной болезни желудка и двенадцатиперстной кишки. В последующем было синтезировано множество других препаратов, действующих на разные подтипы а-адренорецепторов, дофаминовых, опиоидных рецепторов и др. Эти исследования сыграли большую роль в создании новых групп избирательно действующих лекарственных веществ, которые нашли широкое применение в медицинской практике.

Рассматривая действие веществ на постсинаптические рецепторы, следует отметить возможность аллостерического связывания веществ как эндогенного (например, глицин), так и экзогенного (например, анксиолитики бензодиазепинового ряда) происхождения. Аллостерическое взаимодействие с рецептором не вызывает «сигнала». Происходит, однако, модуляция основного медиаторного эффекта, который может как усиливаться, так и ослабляться. Создание веществ такого типа открывает новые возможности регуляции функций ЦНС. Особенностью нейромодуляторов аллостерического действия является то, что они не оказывают прямого действия на основную медиаторную передачу, а лишь видоизменяют ее в желаемом направлении.

Важную роль для понимания механизмов регуляции синаптической передачи сыграло открытие пресинаптических рецепторов (табл. II.2). Были изучены пути гомотропной ауторегуляции (действие выделяющего медиатора на пресинаптические рецепторы того же нервного окончания) и гетеротропной регуляции (пресинаптическая регуляция за счет другого медиатора) высвобождения медиаторов, что позволило по-новому оценить особенности действия многих веществ. Эти сведения послужили также основой для целенаправленного поиска ряда препаратов (например, празозина).

Таблица II.1 Примеры некоторых рецепторов и их подтипов

Рецепторы Подтипы
Аденозиновые рецепторы А 1 , А 2А, А 2B , A 3
α 1 -Адренорецепторы α 1A , α 1B , α 1C
α 2 -Адренорецепторы α 2A , α 2B , α 2C
β-Адренорецепторы β 1 , β 2 , β 3
Ангиотензиновые рецепторы АТ 1 , АТ 2
Брадикининовые рецепторы B 1 , B 2
ГАМК-рецепторы GABA A , GABA B , GABA C
Гистаминовые рецепторы H 1 , H 2 , H 3 , H 4
Дофаминовые рецепторы D 1 , D 2 , D 3 , D 4 , D 5
Лейкотриеновые рецепторы LTB 4 , LTC 4 , LTD 4
М-холинорецепторы М 1 , М 2 , М 3 , М 4
Н-холинорецепторы Мышечного типа, нейронального типа
Опиоидные рецепторы µ, δ, κ
Простаноидные рецепторы DP, FP, IP, TP, EP 1 , EP 2 , EP 3
Пуриновые рецепторы Р P 2X , P 2Y , P 2Z , P 2T , P 2U
Рецепторы возбуждающих аминокислот (ионотропные) NMDA, AMPA, каинатные
Рецепторы нейропептида Y Y 1 , Y 2
Рецепторы предсердного натрийуретического пептида ANPA, ANPB
Серотониновые рецепторы 5-HT 1(A-F) , 5-HT 2(A-C) , 5-HT 3 , 5-HT 4 , 5-HT 5(A-B) , 5-HT 6 , 5-HT 7
Холецистокининовые рецепторы CCK A , CCK B

Таблица II.2 Примеры пресинаптической регуляции высвобождения медиаторов холинергическими и адренергическими окончания

Сродство вещества к рецептору, приводящее к образованию с ним комплекса «вещество-рецептор», обозначается термином «аффинитет» . Способность вещества при взаимодействии с рецептором стимулировать его и вызывать тот или иной эффект называется внутренней активностью.

Вещества, которые при взаимодействии со специфическими рецепторами вызывают в них изменения, приводящие к биологическому эффекту, называют агонистами (они и обладают внутренней активностью). Стимулирующее действие агониста на рецепторы может приводить к активации или угнетению функции клетки. Если агонист, взаимодействуя с рецепторами, вызывает максимальный эффект, его называют полным агонистом. В отличие от последнего частичные агонисты при взаимодействии с теми же рецепторами не вызывают максимального эффекта. Вещества, связывающиеся с рецепторами, но не вызывающие их стимуляцию, называют антагонистами. Внутренняя активность у них отсутствует (равна 0). Их фармакологические эффекты обусловлены антагонизмом с эндогенными лигандами (медиаторами, гормонами), а также с экзогенными веществами-агонистами.

Если они занимают те же рецепторы, с которыми взаимодействуют агонисты, то речь идет о конкурентных антагонистах , если - другие участки макромолекулы, не относящиеся к специфическому рецептору, но взаимосвязанные с ним, то - онеконкурентных антагонистах . При действии вещества как агониста на один подтип рецепторов и как антагониста - на другой, его обозначают агонистом-антагонистом. Например, анальгетик пентазоцин является антагонистом µ- и агонистом δ- и κ-опиоидных рецепторов.

Выделяют и так называемые неспецифические рецепторы , не связанные функционально со специфическими. К ним можно отнести белки плазмы крови, мукополисахариды соединительной ткани и др., с которыми вещества связываются, не вызывая никаких эффектов. Такие рецепторы иногда называют «молчащими» или обозначают как «места потери» веществ. Однако рецепторами целесообразно называть только специфические рецепторы; неспецифические рецепторы правильнее обозначать как места неспецифического связывания.

Взаимодействие «вещество-рецептор» осуществляется за счет межмолекулярных связей. Один из видов наиболее прочной связи - ковалентная. Она известна для небольшого числа препаратов (α-адреноблокатор феноксибензамин, некоторые противобластомные вещества). Менее стойкой является распространенная ионная связь, осуществляемая за счет электростатического взаимодействия веществ с рецепторами. Последняя типична для ганглиоблокаторов, курареподобных средств, ацетилхолина. Важную роль играют ван-дер-ваальсовы силы, составляющие основу гидрофобных взаимодействий, а также водородные связи (табл. II.З).

Таблица II.3 Типы взаимодействия веществ с рецептором

1 Имеется в виду взаимодействие неполярных молекул в водной среде

* 0,7 ккал (3 кДж) на одну CH 2 -группу

В зависимости от прочности связи «вещество-рецептор» различают обратимое действие (характерное для большинства веществ) и необратимое (как правило, в случае ковалентной связи).

Если вещество взаимодействует только с функционально однозначными рецепторами определенной локализации и не влияет на другие рецепторы, то действие такого вещества считают избирательным. Так, некоторые курареподобные средства довольно избирательно блокируют холинорецепторы концевых пластинок, вызывая расслабление скелетных мышц. В дозах, оказывающих миопаралитическое действие, на другие рецепторы они влияют мало.

Основой избирательности действия является сродство (аффинитет) вещества к рецептору. Это обусловлено наличием определенных функциональных группировок, а также общей структурной организацией вещества, наиболее адекватной для взаимодействия с данным рецептором, т.е. их комплементарностью. Нередко термин «избирательное действие» с полным основанием заменяют термином «преимущественное действие», так как абсолютной избирательности действия веществ практически не существует.

Оценивая взаимодействие веществ с мембранными рецепторами, передающими сигнал от наружной поверхности мембраны к внутренней, необходимо учитывать и те промежуточные звенья, которые связывают рецептор с эффектором. Важнейшими компонентами этой системы являются G-белки, группа ферментов (аденилатциклаза, гуанилатциклаза, фосфолипаза С) и вторичные передатчики (цАМФ, цГМФ, ИФ 3 , ДАГ, Са 2+). Повышение образования вторичных передатчиков приводит к активации протеинкиназ, которые обеспечивают внутриклеточное фосфорилирование важных регуляторных белков и развитие разнообразных эффектов.

Большинство из звеньев этого сложного каскада может быть точкой приложения действия фармакологических веществ. Однако пока такие примеры довольно ограничены. Так, применительно к G-белкам известны только токсины, которые с ними связываются. С G s -белком взаимодействует токсин холерного вибриона, а с G i -белком - токсин палочки коклюша.

Имеются отдельные вещества, которые оказывают прямое влияние на ферменты, участвующие в регуляции биосинтеза вторичных передатчиков. Так, дитерпен растительного происхождения форсколин, применяемый в экспериментальных исследованиях, стимулирует аденилатциклазу (прямое действие). Фосфодиэстеразу ингибируют метилксантины. В обоих случаях концентрация цАМФ внутри клетки повышается.

Одной из важных «мишеней» для действия веществ являются ионные каналы. Прогресс в этой области в значительной степени связан с разработкой методов регистрации функции отдельных ионных каналов. Это стимулировало не только фундаментальные исследования, посвященные изучению кинетики ионных процессов, но также способствовало созданию новых лекарственных средств, регулирующих ионные токи (табл. II.4).

Уже в конце 50-х годов было установлено, что местные анестетики блокируют потенциалзависимые Nа + -каналы. К числу блокаторов Nа + -каналов относятся и многие противоаритмические средства. Кроме того, было показано, что ряд противоэпилептических средств (дифенин, карбамазепин) также блокируют потенциалзависимые Nа + -каналы и с этим, по-видимому, связана их противосудорожная активность.

В последние 30 лет большое внимание было уделено блокаторам Са 2+ -каналов, нарушающим вхождение ионов Са 2+ внутрь клетки через потенциалзависимые Са 2+ -каналы. Повышенный интерес к этой группе веществ в значительной степени связан с тем, что ионы Са 2+ принимают участие во многих физиологических процессах: мышечном сокращении, секреторной активности клеток, нервно-мышечной передаче, функции тромбоцитов и т.д.

Многие препараты этой группы оказались весьма эффективными при лечении столь распространенных заболеваний, как стенокардия, сердечные аритмии, артериальная гипертензия. Широкое признание получили такие препараты, как верапамил, дилтиазем, фенигидин и многие другие.

Таблица II.4. Средства, влияющие на ионные каналы

ЛИГАНДЫ Na + -КАНАЛОВ

Блокаторы Na + -каналов

Местные анестетики (лидокаин, новокаин) Противоаритмические средства (хинидин, новокаинамид, этмозин)

Активаторы Na + -каналов Вератридин (алкалоид, гипотензивное действие)

ЛИГАНДЫ Ca 2+ -КАНАЛОВ

Блокаторы Ca 2+ -каналов

Антиангинальные, противоаритмические и антигипертензивыне средства (верапамил, фенигидин, дилтиазем) Активаторы Ca 2+ -каналов

Вау К 8644 (дигидропиридин, кардиотоническое и сосудосуживающее действие)

ЛИГАНДЫ К + -КАНАЛОВ

Блокаторы К + -каналов

Средство, облегчающее нервно-мышечную передачу (пимадин) Противодиабетические средства (бутамид, глибенкламид)

Активаторы К + -каналов Антигипертензивные средства (миноксидил, диазоксид)

Привлекают внимание и активаторы Са 2+ -каналов, например производные дигидропиридина. Подобные вещества могут найти применение в качестве кардиотоников, вазоконстрикторных средств, веществ, стимулирующих высвобождение гормонов и медиаторов, а также стимуляторов ЦНС. Пока таких препаратов для медицинского применения нет, но перспективы их создания вполне реальны.

Особый интерес представляет поиск блокаторов и активаторов Са 2+ -каналов с преимущественным действием на сердце, сосуды разных областей (мозга, сердца и др.), ЦНС. К этому имеются определенные предпосылки, так как Са 2+ -каналы гетерогенны.

В последние годы большое внимание привлекают вещества, регулирующие функцию К + -каналов. Показано, что калиевые каналы весьма разнообразны по своей функциональной характеристике. С одной стороны, это существенно затрудняет фармакологические исследования, а с другой - создает реальные предпосылки для поиска избирательно действующих веществ. Известны как активаторы, так и блокаторы калиевых каналов.

Активаторы калиевых каналов способствуют их открыванию и выходу ионов К + из клетки. Если это происходит в гладких мышцах, то развивается гиперполяризация мембраны и тонус мышц снижается. Благодаря такому механизму действуют миноксидил и диазоксид, используемые в качестве гипотензивных средств.

Блокаторы потенциалзависимых калиевых каналов представляют интерес в качестве противоаритмических средств. Блокирующим влиянием на калиевые каналы, по-видимому, обладают амиодарон, орнид, соталол.

Блокаторы АТФ-зависимых калиевых каналов в поджелудочной железе повышают секрецию инсулина. По такому принципу действуют противодиабетические средства группы сульфонилмочевины (хлорпропамид, бутамид и др.).

Стимулирующий эффект аминопиридинов на ЦНС и нервно-мышечную передачу также связывают с их блокирующим влиянием на калиевые каналы.

Таким образом, воздействие на ионные каналы лежит в основе действия различных лекарственных средств.

Важной «мишенью» для действия веществ являются ферменты. Ранее уже отмечалась возможность воздействия на ферменты, регулирующие образование вторичных передатчиков (например, цАМФ). Установлено, что механизм действия нестероидных противовоспалительных средств обусловлен ингибированием циклооксигеназы и снижением биосинтеза простагландинов. В качестве гипотензивных средств используются ингибиторы ангиотензинпревращающего фермента (каптоприл и др.). Хорошо известны антихолинэстеразные средства, блокирующие ацетилхолинэстеразу и стабилизирующие ацетилхолин.

Противобластомное средство метотрексат (антагонист фолиевой кислоты) блокирует дигидрофолатредуктазу, препятствуя образованию тетрагидрофолата, необходимого для синтеза пуринового нуклеотида - тимидилата. Противогерпетический препарат ацикловир, превращаясь в ацикловиртрифосфат, ингибирует вирусную ДНК-полимеразу.

Еще одна возможная «мишень» для действия лекарственных средств - это транспортные системы для полярных молекул, ионов, мелких гидрофильных молекул. К ним относятся так называемые транспортные белки, переносящие вещества через клеточную мембрану. Они имеют распознающие участки для эндогенных веществ, которые могут взаимодействовать с лекарственными средствами. Так, трициклические антидепрессанты блокируют нейрональный захват норадреналина. Резерпин блокирует депонирование норадреналина в везикулах. Одно из значительных достижений - создание ингибиторов протонового насоса в слизистой оболочке желудка (омепразол и др.), которые показали высокую эффективность при язвенной болезни желудка и двенадцатиперстной кишки, а также при гиперацидном гастрите.

В последнее время в связи с расшифровкой генома человека проводятся интенсивные исследования, связанные с использованием в качестве мишени генов. Несомненно, что генная терапия является одним из важнейших направлений современной и будущей фармакологии. Идея такой терапии заключается в регуляции функции генов, этиопатогенетическая роль которых доказана. Основные принципы генной терапии сводятся к увеличению, уменьшению или выключению экспрессии генов, а также к замене мутантного гена.

Решение этих задач стало реальным благодаря возможности клонировать цепи с заданной последовательностью нуклеотидов. Введение таких модифицированных цепей направлено на нормализацию синтеза белков, определяющих данную патологию, и соответственно на восстановление нарушенной функции клеток.

Центральной проблемой в успешном развитии генной терапии является доставка нуклеиновых кислот к клеткам-мишеням. Нуклеиновые кислоты должны попасть из экстрацеллюлярных пространств в плазму, а затем, пройдя через клеточные мембраны, проникнуть в ядро и инкорпорироваться в хромосомы. В качестве транспортеров, или векторов, предложено использовать некоторые вирусы (например, ретровирусы, аденовирусы). При этом с помощью генной инженерии вирусы-векторы лишаются способности к репликации, т.е. из них не происходит образования новых вирионов. Предложены и другие транспортные системы - комплексы ДНК с липосомами, белками, плазмидные ДНК и прочие микрочастицы и микросферы.

Естественно, что инкорпорированный ген должен функционировать достаточно длительное время, т.е. экспрессия гена должна быть стойкой.

Потенциальные возможности генной терапии касаются многих наследственных заболеваний. К ним относятся иммунодефицитные состояния, некоторые виды патологии печени (включая гемофилию), гемоглобинопатии, заболевания легких (например, кистозный фиброз), мышечной ткани (мышечная дистрофия Дюшенна) и др.

Широким фронтом разворачиваются исследования по выяснению потенциальных путей использования генной терапии для лечения опухолевых заболеваний. Эти возможности заключаются в блокировании экспрессии онкогенных белков; в активации генов, способных подавлять рост опухолей; в стимуляции образования в опухолях специальных ферментов, превращающих пролекарства в токсичные только для опухолевых клеток соединения; повышении устойчивости клеток костного мозга к угнетающему действию антибластомных средств; повышении иммунитета против раковых клеток и т.д.

В случаях, когда возникает необходимость блокировать экспрессию определенных генов, используют специальную технологию так называемых антисмысловых (антисенсовых) олигонуклеотидов. Последние представляют собой относительно короткие цепочки нуклеотидов (из 15-25 оснований), которые комплементарны той зоне нуклеиновых кислот, где находится ген-мишень. В результате взаимодействия с антисмысловым олигонуклеотидом экспрессия данного гена подавляется. Этот принцип действия представляет интерес при лечении вирусных, опухолевых и других заболеваний. Создан первый препарат из группы антисмысловых нуклеотидов - витравен (фомивирзен), применяемый местно при ретините, вызванном цитомегаловирусной инфекцией. Появились препараты этого типа для лечения миелоидной лейкемии и других заболеваний крови. Они проходят клинические испытания.

В настоящее время проблема использования генов в качестве мишеней для фармакологического воздействия находится в основном в стадии фундаментальных исследований. Лишь единичные перспективные вещества такого типа проходят доклинические и начальные клинические испытания. Однако не приходится сомневаться, что в этом веке появятся многие эффективные средства для генной терапии не только наследственных, но и приобретенных заболеваний. Это будут принципиально новые препараты для лечения опухолей, вирусных заболеваний, иммунодефицитных состояний, нарушений кроветворения и свертывания крови, атеросклероза и т.д.

Таким образом, возможности для направленного воздействия лекарственных средств весьма разнообразны.

Высшего профессионального образования

«нижегородская государственная медицинская академия федерального агентства по здравоохранению

и социальному развитию»

Кафедра общей и клинической фармакологии

Методическая разработка практического занятия по теме:

Общая фармакология

по дисциплине «Фармакология»

(для студентов)

МЕТОДИЧЕСКАЯ РАЗРАБОТКА ПО ТЕМЕ:

«ОБЩАЯ ФАРМАКОЛОГИЯ»

I .Характер действия лекарственных веществ

1. Возбуждающий характер действия – изменение функции органов, систем или всего организма в целом под действием лекарственных веществ в сторону усиления.

Возможны следующие варианты:

а) Стимулирующий характер действия: усиление функции организма под влиянием лекарственных веществ не до нормы, но вполне достаточное для поддержания жизнедеятельности.

б) Тонизирующий характер действия: усиление функции организма под влиянием лекарственных веществ до нормального уровня.

в) Возбуждающий характер действия: повышение функций организма выше нормального уровня.

г) Угнетающий характер действия: перевозбуждение функций органов, структур, тканей, заканчивающееся функциональным параличом.

(2-х фазность действия: 1-я фаза - возбуждения, затем 2-я фаза - угнетения).

2.Угнетающий характер действия - изменение функций органов, систем или организма в целом под действием лекарственных веществ в сторону ослабления.

Возможны следующие варианты :

а) Седативный характер действия: снижение резко повышенных функций органов и систем под действием лекарственных веществ, но не до нормального состояния.

б) Нормализующий характер действия: возвращение резко повышенных функций органов и систем под действием лекарственных веществ к нормальному состоянию.

в) Собственно угнетающий характер действия: понижение повышенной или нормальной функции органов и систем под действием лекарственных веществ ниже нормального состояния.

г) Парализующий характер действия: снижение нормальной функции тканевых структур, заканчивающееся функциональным параличом.

II. Понятие о лекарственном веществе и яде. Дозы. Классификация доз.

Лекарственное вещество – вещество, в определенной дозе улучшающее функции органов и систем при их нарушении (болезни)

Яд – это химически активное вещество, приводящее к разной степени выраженным нарушениям функций и структур разных органов и систем

Понятие «лекарственное вещество» и «ядовитое вещество» обратимы взависимости от:

1) Дозы - Парацельс: «Все есть яд, все – лекарство, все зависит от дозы».

2) Физико-химических свойств.

3) Условий и способов применений.

4) Состояния организма.

Доза – определенное количество лекарственного вещества, вызывающее изменение функции органов и систем

Классификация доз:

1. По цели применения: лечебные

экспериментальные

2. По величине эффекта:

1) терапевтические 2) токсические

Минимальная - минимальная

Средняя - средняя

Максимальная - летальная

3. По схеме введения в организм:

Суточные

Курсовые

Поддерживающие

Широта терапевтического действия : отношение минимальной терапевтической дозы к минимальной токсической (диапазон доз)

Критерий безопасности лекарств – чем больше ШТД, тем безопаснее лекарство.

Ш. Виды действия лекарственных веществ

(А) По локализации фармакологических эффектов

1.Местное – действие, развивающееся на месте введения препарата

Пример: аппликация мазей, местная реакция в дыхательных путях при ингаляции летучих веществ; из-за сильного местного раздражающегося действия сердечные гликозиды не вводят под кожу.

2.Резорбтивное - действие лекарственных веществ, развивающееся после всасывания (резорбции) лекарственных веществ в крови.

Центральное – результат всасывания лекарственных веществ, проникающих через ГЭБ, на ЦНС.

Периферическое – результат влияния лекарственных веществ на периферические органы и ткани

Рефлекторное – действие лекарственных веществ, на интеро- и экстерорецепторы рефлексогенных зон и через рефлекторные дуги на разные органы и ткани

Пример: лобелин рефлекторно через синокаротидную зону возбуждает Д.Ц. (дыхательный центр);

нашатырный спирт рефлекторно, через раздражение рецепторов тройничного нерва в верхних дыхательных путях, возбуждает Д.Ц. и СДЦ.

(Б) По механизму возникновения эффектов

1).Прямое действие (первичное) – непосредственное воздействие лекарственного вещества на органы и ткани (при местном и резорбтивном действии).

Пример: - окситоцин стимулирует мускулатуру матки;

Сердечные гликозиды повышают сократительную способность миокарда

2).Косвенное действие (вторичное) – следствие прямого действия лекарственных веществ

Уменьшение отеков как следствие кардиологического действия сердечных гликозидов

Устранение бессонницы, тахикардии как следствие прямого угнетающего действия мерказолила на щитовидную железу.



(В) В зависимости от роли препарата в лечебном процессе

а) Преимущественное – наиболее выраженное действие лекарственных веществ на один орган со слабо выраженным на другие органы (системы).

Пример: преимущественное возбуждающее действие М,Н – холиномиметика ацетилхолина на М-холинорецепторы внутренних органов в терапевтических дозах.

б) Избирательное – действие лекарственных веществ только на определенный орган или процесс. В терапевтических дозах действие на другие органы и системы почти не выражено или плохо выражено.

Пример: избирательное блокирующее действие миорелаксантов на Н-холинорецепторы скелетной мускулатуры

в) Этиотропное (специфическое) – действие лекарственных веществ на причину заболевания.

Пример: действие антибиотиков, сульфаниламидов на возбудителя инфекционных заболеваний

г) Симптоматическое (паллиативное) – воздействие на симптомы заболевания

Пример: жаропонижающее, анальгезирующее действие аспирина

д) Патогенетическое – воздействие на различные звенья патогенеза патологического процесса.

Пример: противовоспалительное действие глюкокортикоидов

(Г) В зависимости от ожидаемого эффекта.

1) желательное - то действие, ради которого применяется ЛВ при данном заболевании.

2)побочное - остальные фармакологические эффекты, кроме желательного при данном заболевании.