Найти площадь фигуры ограниченной линией r. Примеры

Пусть функция неотрицательна и непрерывна на отрезке . Тогда, согласно геометрическому смыслу определенного интеграла, площадь криволинейной трапеции, ограниченной сверху графиком этой функции, снизу – осью , слева и справа – прямыми и (см. рис. 2) вычисляется по формуле

Пример 9. Найти площадь фигуры, ограниченной линией и осью .

Решение . Графиком функции является парабола, ветви которой направлены вниз. Построим ее (рис. 3). Чтобы определить пределы интегрирования, найдем точки пересечения линии (параболы) с осью (прямой ). Для этого решаем систему уравнений

Получаем: , откуда , ; следовательно, , .

Рис. 3

Площадь фигуры находим по формуле (5):

Если функция неположительна и непрерывна на отрезке , то площадь криволинейной трапеции, ограниченной снизу графиком данной функции, сверху – осью , слева и справа – прямыми и , вычисляется по формуле

. (6)

В случае, если функция непрерывна на отрезке и меняет знак в конечном числе точек, то площадь заштрихованной фигуры (рис. 4) равна алгебраической сумме соответствующих определенных интегралов:

Рис. 4

Пример 10. Вычислить площадь фигуры, ограниченной осью и графиком функции при .

Рис. 5

Решение . Сделаем чертеж (рис. 5). Искомая площадь представляет собой сумму площадей и . Найдем каждую из этих площадей. Вначале определим пределы интегрирования, решив систему Получим , . Следовательно:

;

.

Таким образом, площадь заштрихованной фигуры равна

(кв. ед.).

Рис. 6

Пусть, наконец, криволинейная трапеция ограничена сверху и снизу графиками непрерывных на отрезке функций и ,
а слева и справа – прямыми и (рис. 6). Тогда ее площадь вычисляется по формуле



. (8)

Пример 11. Найти площадь фигуры, ограниченной линиями и .

Решение. Данная фигура изображена на рис. 7. Площадь ее вычислим по формуле (8). Решая систему уравнений находим , ; следовательно, , . На отрезке имеем: . Значит, в формуле (8) в качестве возьмем x , а в качестве – . Получим:

(кв. ед.).

Более сложные задачи на вычисление площадей решают путем разбиения фигуры на непересекающиеся части и вычисления площади всей фигуры как суммы площадей этих частей.

Рис. 7

Пример 12. Найти площадь фигуры, ограниченной линиями , , .

Решение . Сделаем чертеж (рис. 8). Данную фигуру можно рассматривать как криволинейную трапецию, ограниченную снизу осью , слева и справа – прямыми и , сверху – графиками функций и . Так как фигура ограничена сверху графиками двух функций, то для вычисления ее площади разобьем данную фигуру прямой на две части (1 – это абсцисса точки пересечения линий и ). Площадь каждой из этих частей находим по формуле (4):

(кв. ед.); (кв. ед.). Следовательно:

(кв. ед.).

Рис. 8

х = j (у )

Рис. 9

В заключение отметим, что если криволинейная трапеция ограничена прямыми и , осью и непрерывной на кривой (рис. 9), то ее площадь находится по формуле

Объем тела вращения

Пусть криволинейная трапеция, ограниченная графиком непрерывной на отрезке функции , осью , прямыми и , вращается вокруг оси (рис. 10). Тогда объем полученного тела вращения вычисляется по формуле

. (9)

Пример 13. Вычислить объем тела, полученного вращением вокруг оси криволинейной трапеции, ограниченной гиперболой , прямыми , и осью .

Решение . Сделаем чертеж (рис. 11).

Из условия задачи следует, что , . По формуле (9) получаем

.

Рис. 10

Рис. 11

Объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной прямыми у = с и у = d , осью Оу и графиком непрерывной на отрезке функции (рис. 12), определяется по формуле

. (10)

х = j (у )

Рис. 12

Пример 14 . Вычислить объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной линиями х 2 = 4у , у = 4, х = 0 (рис. 13).

Решение . В соответствии с условием задачи находим пределы интегрирования: , . По формуле (10) получаем:

Рис. 13

Длина дуги плоской кривой

Пусть кривая , заданная уравнением , где , лежит в плоскости (рис. 14).

Рис. 14

Определение. Под длиной дуги понимается предел, к которому стремится длина ломаной линии, вписанной в эту дугу, когда число звеньев ломаной стремится к бесконечности, а длина наибольшего звена стремится к нулю.

Если функция и ее производная непрерывны на отрезке , то длина дуги кривой вычисляется по формуле

. (11)

Пример 15 . Вычислить длину дуги кривой , заключенной между точками, для которых .

Решение . Из условия задачи имеем . По формуле (11) получаем:

.

4. Несобственные интегралы
с бесконечными пределами интегрирования

При введении понятия определённого интеграла предполага-лось, что выполняются следующие два условия:

а) пределы интегрирования а и являются конечными;

б) подынтегральная функция ограничена на отрезке .

Если хотя бы одно из этих условий не выполняется, то интеграл называется несобственным .

Рассмотрим вначале несобственные интегралы с бесконечными пределами интегрирования.

Определение. Пусть функция определена и непрерывна на промежутке , тогда и неограниченной справа (рис. 15).

Если несобственный интеграл сходится, то эта площадь является конечной; если несобственный интеграл расходится, то эта площадь бесконечна.

Рис. 15

Аналогично определяется несобственный интеграл с бесконечным нижним пределом интегрирования:

. (13)

Этот интеграл сходится, если предел в правой части равенства (13) существует и конечен; в противном случае интеграл называется расходящимся.

Несобственный интеграл с двумя бесконечными пределами интегрирования определяется следующим образом:

, (14)

где с – любая точка интервала . Интеграл сходится только в том случае, когда сходятся оба интеграла в правой части равенства (14).

;

г) = [выделим в знаменателе полный квадрат: ] = [замена:

] =

Значит, несобственный интеграл сходится и его значение равно .

Начинаем рассматривать собственно процесс вычисления двойного интеграла и знакомиться с его геометрическим смыслом.

Двойной интеграл численно равен площади плоской фигуры (области интегрирования). Это простейший вид двойного интеграла, когда функция двух переменных равна единице: .

Сначала рассмотрим задачу в общем виде. Сейчас вы немало удивитесь, насколько всё действительно просто! Вычислим площадь плоской фигуры , ограниченной линиями . Для определённости считаем, что на отрезке . Площадь данной фигуры численно равна:

Изобразим область на чертеже:

Выберем первый способ обхода области:

Таким образом:

И сразу важный технический приём: повторные интегралы можно считать по отдельности . Сначала внутренний интеграл, затем – внешний интеграл. Данный способ настоятельно рекомендую начинающим в теме чайникам.

1) Вычислим внутренний интеграл, при этом интегрирование проводится по переменной «игрек»:

Неопределённый интеграл тут простейший, и далее используется банальная формула Ньютона-Лейбница, с той лишь разницей, что пределами интегрирования являются не числа, а функции . Сначала подставили в «игрек» (первообразную функцию) верхний предел, затем – нижний предел

2) Результат, полученный в первом пункте необходимо подставить во внешний интеграл:

Более компактная запись всего решения выглядит так:

Полученная формула – это в точности рабочая формула для вычисления площади плоской фигуры с помощью «обычного» определённого интеграла! Смотрите урок Вычисление площади с помощью определенного интеграла , там она на каждом шагу!

То есть, задача вычисления площади с помощью двойного интеграла мало чем отличается от задачи нахождения площади с помощью определённого интеграла! Фактически это одно и тоже!

Соответственно, никаких трудностей возникнуть не должно! Я рассмотрю не очень много примеров, так как вы, по сути, неоднократно сталкивались с данной задачей.

Пример 9

Решение: Изобразим область на чертеже:

Выберем следующий порядок обхода области:

Здесь и далее я не буду останавливаться на том, как выполнять обход области, поскольку в первом параграфе были приведены очень подробные разъяснения.

Таким образом:

Как я уже отмечал, начинающим лучше вычислять повторные интегралы по отдельности, этого же метода буду придерживаться и я:

1) Сначала с помощью формулы Ньютона-Лейбница разбираемся с внутренним интегралом:

2) Результат, полученный на первом шаге, подставляем во внешний интеграл:

Пункт 2 – фактически нахождение площади плоской фигуры с помощью определённого интеграла.

Ответ:

Вот такая вот глупая и наивная задача.

Любопытный пример для самостоятельного решения:

Пример 10

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями , ,

Примерный образец чистового оформления решения в конце урока.

В Примерах 9-10 значительно выгоднее использовать первый способ обхода области, любознательные читатели, кстати, могут изменить порядок обхода и вычислить площади вторым способом. Если не допустите ошибку, то, естественно, получатся те же самые значения площадей.

Но в ряде случаев более эффективен второй способ обхода области, и в заключение курса молодого ботана рассмотрим ещё пару примеров на эту тему:

Пример 11

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями ,

Решение: нас с нетерпением ждут две параболы с бзиком, которые лежат на боку. Улыбаться не нужно, похожие вещи в кратных интегралах встречаются частенько.

Как проще всего сделать чертёж?

Представим параболу в виде двух функций:
– верхняя ветвь и – нижняя ветвь.

Аналогично, представим параболу в виде верхней и нижней ветвей.

Далее рулит поточечное построение графиков, в результате чего получается вот такая причудливая фигура:

Площадь фигуры вычислим с помощью двойного интеграла по формуле:

Что будет, если мы выберем первый способ обхода области? Во-первых, данную область придётся разделить на две части. А во-вторых, мы будем наблюдать сию печальную картину: . Интегралы, конечно, не сверхсложного уровня, но… существует старая математическая присказка: кто с корнями дружен, тому зачёт не нужен.

Поэтому из недоразумения, которое дано в условии, выразим обратные функции:

Обратные функции в данном примере обладают тем преимуществом, что задают сразу всю параболу целиком без всяких там листьев, желудей веток и корней.

Согласно второму способу, обход области будет следующим:

Таким образом:

Как говорится, ощутите разницу.

1) Расправляемся с внутренним интегралом:

Результат подставляем во внешний интеграл:

Интегрирование по переменной «игрек» не должно смущать, была бы буква «зю» – замечательно бы проинтегрировалось и по ней. Хотя кто прочитал второй параграф урока Как вычислить объем тела вращения , тот уже не испытывает ни малейшей неловкости с интегрированием по «игрек».

Также обратите внимание на первый шаг: подынтегральная функция является чётной, а отрезок интегрирования симметричен относительно нуля. Поэтому отрезок можно споловинить, а результат – удвоить. Данный приём подробно закомментирован на уроке Эффективные методы вычисления определённого интеграла .

Что добавить…. Всё!

Ответ:

Для проверки своей технике интегрирования можете попробовать вычислить . Ответ должен получиться точно таким же.

Пример 12

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями

Это пример для самостоятельного решения. Интересно отметить, что если вы попробуете использовать первый способ обхода области, то фигуру придётся разделить уже не на две, а на три части! И, соответственно, получится три пары повторных интегралов. Бывает и такое.

Мастер класс подошел к завершению, и пора переходить на гроссмейстерский уровень – Как вычислить двойной интеграл? Примеры решений . Постараюсь во второй статье так не маньячить =)

Желаю успехов!

Решения и ответы:

Пример 2: Решение: Изобразим область на чертеже:

Выберем следующий порядок обхода области:

Таким образом:
Перейдём к обратным функциям:


Таким образом:
Ответ:

Пример 4: Решение: Перейдём к прямым функциям:


Выполним чертёж:

Изменим порядок обхода области:

Ответ:

а)

Решение.

Первый и важнейший момент решения - построение чертежа .

Выполним чертеж:

Уравнение y=0 задает ось «иксов»;

- х=-2 и х=1 - прямые, параллельные оси Оу;

- у=х 2 +2 - парабола, ветви которой направлены вверх, с вершиной в точке (0;2).

Замечание. Для построения параболы достаточно найти точки ее пересечения с координатными осями, т.е. положив х=0 найти пересечение с осью Оу и решив соответствующее квадратное уравнение, найти пересечение с осью Ох .

Вершину параболы можно найти по формулам:

Можно построить линии и поточечно.

На отрезке [-2;1] график функции y=x 2 +2 расположен над осью Ox , поэтому:

Ответ: S =9 кв.ед.

После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже - ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка - в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Что делать, если криволинейная трапеция расположена под осью Ох?

b) Вычислить площадь фигуры, ограниченной линиями y=-e x , x=1 и координатными осями.

Решение.

Выполним чертеж.

Если криволинейная трапеция полностью расположена под осью Ох , то её площадь можно найти по формуле:

Ответ: S=(e-1) кв.ед.»1,72 кв.ед.

Внимание! Не следует путать два типа задач :

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости.

с) Найти площадь плоской фигуры, ограниченной линиями у=2х-х 2 , у=-х.

Решение.

Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой Это можно сделать двумя способами. Первый способ - аналитический.

Решаем уравнение:

Значит, нижний предел интегрирования а=0 , верхний предел интегрирования b=3 .

Строим заданные линии: 1. Парабола - вершина в точке (1;1); пересечение с осью Ох - точки(0;0) и (0;2). 2. Прямая - биссектриса 2-го и 4-го координатных углов. А теперь Внимание! Если на отрезке [a;b ] некоторая непрерывная функция f(x) больше либо равна некоторой непрерывной функции g(x) , то площадь соответствующей фигуры можно найти по формуле: .


И не важно , где расположена фигура - над осью или под осью, а важно , какой график ВЫШЕ (относительно другого графика), а какой- НИЖЕ. В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть

Можно построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными).

Искомая фигура ограничена параболой сверху и прямой снизу.

На отрезке , по соответствующей формуле:

Ответ: S =4,5 кв.ед.

Рассмотрим криволинейную трапецию, ограниченную осью Ох, кривой y=f(x) и двумя прямыми: х=а и х=Ь (рис. 85). Возьмем произвольное значение х (только не а и не Ь). Дадим ему приращение h = dx и рассмотрим полоску, ограниченную прямыми АВ и CD, осью Ох и дугой BD, принадлежащей рассматриваемой кривой. Эту полоску будем называть элементарной полоской. Площадь элементарной полоски отличается от площади прямоугольника ACQB на криволинейный треугольник BQD, а площадь последнего меньше площади прямоугольника BQDM со сторонами BQ = =h=dx} QD=Ay и площадью, равной hAy = Ay dx. С уменьшением стороны h сторона Ду также уменьшается и одновременно с h стремится к нулю. Поэтому площадь BQDM является бесконечно малой второго порядка. Площадь элементарной полоски есть приращение площади, а площадь прямоугольника ACQB, равная АВ-АС==/(х) dx> есть дифференциал площади. Следовательно, саму площадь найдем, интегрируя ее дифференциал. В пределах рассматриваемой фигуры независимое переменное л: меняется от а до b, поэтому искомая площадь 5 будет равна 5= \f(x) dx. (I) Пример 1. Вычислим площадь, ограниченную параболой у - 1 -х*, прямыми X =--Fj-, х = 1 и осью О* (рис. 86). у Рис. 87. Рис. 86. 1 Здесь f(x)= 1 - л?, пределы интегрирования а = - и £=1, поэтому J [*-т]\- -fl -- Г -1-±Л_ 1V1 -l-l-Ii-^ 3) |_ 2 3V 2 / J 3 24 24* Пример 2. Вычислим площадь, ограниченную синусоидой y = sinXy осью Ох и прямой (рис. 87). Применяя формулу (I), получаем Л 2 S= J sinxdx= [-cos x]Q =0 -(-1) = lf Пример 3. Вычислим площадь, ограниченную дугой синусоиды ^у = sin jc, заключенной между двумя соседними точками пересечения с осью Ох (например, между началом координат и точкой с абсциссой я). Заметим, что из геометрических соображений ясно, что эта площадь будет в два раза больше площади предыдущего примера. Однако проделаем вычисления: я 5= | s\nxdx= [ - cosх}* - - cos я-(-cos 0)= 1 + 1 = 2. о Действительно, наше предположение оказалось справедливым. Пример 4. Вычислить площадь, ограниченную синусоидой и ^ осью Ох на одном пе-х риоде (рис. 88). Предварительные рас-рис суждения позволяют предположить, что площадь получится в четыре раза больше, чем в пр. 2. Однако, произведя вычисления, получим «я Г,*я S - \ sin х dx = [ - cos х]0 = = -cos 2л -(-cos 0) = - 1 + 1 = 0. Этот результат требует разъяснений. Для выяснения сути дела вычисляем еще площадь, ограниченную той же синусоидой у = sin л: и осью Ох в пределах от л до 2я. Применяя формулу (I), получаем 2л $2л sin хdx=[ - cosх]л =-cos 2я~}-с05я=- 1-1 =-2. я Таким образом, видим, что эта площадь получилась отрицательной. Сравнивая ее с площадью, вычисленной в пр. 3, получаем, что их абсолютные величины одинаковы, а знаки разные. Если применить свойство V (см. гл. XI, § 4), то получим 2л я 2л J sin xdx= J sin * dx [ sin x dx = 2 + (- 2) = 0То, что получилось в этом примере, не является случайностью. Всегда площадь, расположенная ниже оси Ох, при условии, что независимое переменное изменяется слева направо, получается при вычислении с помощью интегралов отрицательной. В этом курсе мы всегда будем рассматривать площади без знаков. Поэтому ответ в только что разобранном примере будет таким: искомая площадь равна 2 + |-2| = 4. Пример 5. Вычислим площадь ОАВ, указанную на рис. 89. Эта площадь ограничена осью Ох, параболой у = - хг и прямой у - =-х+\. Площадь криволинейной трапеции Искомая площадь ОАВ состоит из двух частей: ОАМ и МАВ. Так как точка А является точкой пересечения параболы и прямой, то ее координаты найдем, решая систему уравнений 3 2 У = тх. (нам нужно найти только абсциссу точки А). Решая систему, находим л; = ~. Поэтому площадь приходится вычислять по частям, сначала пл. ОАМ, а затем пл. МАВ: .... Г 3 2 , 3 Г хП 3 1 / 2 У 2 . QAM-^х }