Разложение функции в ряд тейлора, маклорена, лорана. §6

Если функция f(x) имеет на некотором интервале, содержащем точку а, производные всех порядков, то к ней может быть применена формула Тейлора:
,
где r n – так называемый остаточный член или остаток ряда, его можно оценить с помощью формулы Лагранжа:
, где число x заключено между х и а.

f(x)=

В точке x 0 =
Количество элементов ряда 3 4 5 6 7
Использовать разложение элементарных функций e x , cos(x), sin(x), ln(1+x), (1+x) m

Правила ввода функций :

Если для некоторого значения х r n →0 при n →∞, то в пределе формула Тейлора превращается для этого значения в сходящийся ряд Тейлора :
,
Таким образом, функция f(x) может быть разложена в ряд Тейлора в рассматриваемой точке х, если:
1) она имеет производные всех порядков;
2) построенный ряд сходится в этой точке.

При а =0 получаем ряд, называемый рядом Маклорена :
,
Разложение простейших (элементарных) функций в ряд Маклорена:
Показательные функции
, R=∞
Тригонометрические функции
, R=∞
, R=∞
, (-π/2 < x < π/2), R=π/2
Функция actgx не разлагается по степеням x, т.к. ctg0=∞
Гиперболические функции


Логарифмические функции
, -1
Биномиальные ряды
.

Пример №1 . Разложить в степенной ряд функцию f(x)= 2 x .
Решение . Найдем значения функции и ее производных при х =0
f(x) = 2 x , f(0) = 2 0 =1;
f"(x) = 2 x ln2, f"(0) = 2 0 ln2= ln2;
f""(x) = 2 x ln 2 2, f""(0) = 2 0 ln 2 2= ln 2 2;

f (n) (x) = 2 x ln n 2, f (n) (0) = 2 0 ln n 2= ln n 2.
Подставляя полученные значения производных в формулу ряда Тейлора, получим:

Радиус сходимости этого ряда равен бесконечности, поэтому данное разложение справедливо для -∞<x <+∞.

Пример №2 . Написать ряд Тейлора по степеням (х +4) для функции f(x)= e x .
Решение . Находим производные функции e x и их значения в точке х =-4.
f(x) = е x , f(-4) = е -4 ;
f"(x) = е x , f"(-4) = е -4 ;
f""(x) = е x , f""(-4) = е -4 ;

f (n) (x) = е x , f (n) ( -4) = е -4 .
Следовательно, искомый ряд Тейлора функции имеет вид:

Данное разложение также справедливо для -∞<x <+∞.

Пример №3 . Разложить функцию f(x) =lnx в ряд по степеням (х- 1),
(т.е. в ряд Тейлора в окрестности точки х =1).
Решение . Находим производные данной функции.
f(x)=lnx , , , ,

f(1)=ln1=0, f"(1)=1, f""(1)=-1, f"""(1)=1*2,..., f (n) =(-1) n-1 (n-1)!
Подставляя эти значения в формулу, получим искомый ряд Тейлора:

С помощью признака Даламбера можно убедиться, что ряд сходится при ½х-1½<1 . Действительно,

Ряд сходится, если ½х- 1½<1, т.е. при 0<x <2. При х =2 получаем знакочередующийся ряд, удовлетворяющий условиям признака Лейбница. При х=0 функция не определена. Таким образом, областью сходимости ряда Тейлора является полуоткрытый промежуток (0;2].

Пример №4 . Разложить в степенной ряд функцию .
Решение . В разложении (1) заменяем х на -х 2 , получаем:
, -∞

Пример №5 . Разложить в ряд Маклорена функцию .
Решение . Имеем
Пользуясь формулой (4), можем записать:

подставляя вместо х в формулу –х, получим:

Отсюда находим: ln(1+x)-ln(1-x) = -
Раскрывая скобки, переставляя члены ряда и делая приведение подобных слагаемых, получим
. Этот ряд сходится в интервале (-1;1), так как он получен из двух рядов, каждый из которых сходится в этом интервале.

Замечание .
Формулами (1)-(5) можно пользоваться и для разложения соответствующих функций в ряд Тейлора, т.е. для разложения функций по целым положительным степеням (х-а ). Для этого над заданной функцией необходимо произвести такие тождественные преобразования, чтобы получить одну из функций (1)-(5), в которой вместо х стоит k(х-а ) m , где k – постоянное число, m – целое положительное число. Часто при этом удобно сделать замену переменной t =х-а и раскладывать полученную функцию относительно t в ряд Маклорена.

Этот метод основан на теореме о единственности разложения функции в степенной ряд. Сущность этой теоремы состоит в том, что в окрестности одной и той же точки не может быть получено два различных степенных ряда, которые бы сходились к одной и той же функции, каким бы способом ее разложение ни производилось.

Пример №5а . Разложить в ряд Маклорена функцию , указать область сходимости.
Решение. Сначала найдем 1-x-6x 2 =(1-3x)(1+2x) , .
на элементарные:

Дробь 3/(1-3x) можно рассматривать как сумму бесконечно убывающей геометрической прогрессии знаменателем 3x, если |3x| < 1. Аналогично, дробь 2/(1+2x) как сумму бесконечно убывающей геометрической прогрессии знаменателем -2x, если |-2x| < 1. В результате получим разложение в степенной ряд

с областью сходимости |x| < 1/3.

Пример №6 . Разложить функцию в ряд Тейлора в окрестности точки х =3.
Решение . Эту задачу можно решить, как и раньше, с помощью определения ряда Тейлора, для чего нужно найти производные функции и их значения при х =3. Однако проще будет воспользоваться имеющимся разложением (5):
=
Полученный ряд сходится при или –3

Пример №7 . Написать ряд Тейлора по степеням (х -1) функции ln(x+2) .
Решение .


Ряд сходится при , или -2 < x < 5.

Пример №8 . Разложить функцию f(x)=sin(πx/4) в ряд Тейлора в окрестности точки x =2.
Решение . Сделаем замену t=х-2:

Воспользовавшись разложением (3), в котором на место х подставим π / 4 t, получим:

Полученный ряд сходится к заданной функции при -∞< π / 4 t<+∞, т.е. при (-∞Таким образом,
, (-∞

Приближенные вычисления с помощью степенных рядов

Степенные ряды широко используются в приближенных вычислениях. С их помощью с заданной точностью можно вычислять значения корней, тригонометрических функций, логарифмов чисел, определенных интегралов. Ряды применяются также при интегрировании дифференциальных уравнений.
Рассмотрим разложение функции в степенной ряд:

Для того, чтобы вычислить приближенное значение функции в заданной точке х , принадлежащей области сходимости указанного ряда, в ее разложении оставляют первые n членов (n – конечное число), а остальные слагаемые отбрасывают:

Для оценки погрешности полученного приближенного значения необходимо оценить отброшенный остаток r n (x) . Для этого применяют следующие приемы:
  • если полученный ряд является знакочередующимся, то используется следующее свойство: для знакочередующегося ряда, удовлетворяющего условиям Лейбница, остаток ряда по абсолютной величине не превосходит первого отброшенного члена .
  • если данный ряд знакопостоянный, то ряд, составленный из отброшенных членов, сравнивают с бесконечно убывающей геометрической прогрессией.
  • в общем случае для оценки остатка ряда Тейлора можно воспользоваться формулой Лагранжа: ax).

Пример №1 . Вычислить ln(3) с точностью до 0,01.
Решение . Воспользуемся разложением , где x=1/2 (см. пример 5 в предыдущей теме):

Проверим, можем ли мы отбросить остаток после первых трех членов разложения, для этого оценим его с помощью суммы бесконечно убывающей геометрической прогрессии:

Таким образом, мы можем отбросить этот остаток и получаем

Пример №2 . Вычислить с точностью до 0,0001.
Решение . Воспользуемся биномиальным рядом. Так как 5 3 является ближайшим к 130 кубом целого числа, то целесообразно число 130 представить в виде 130=5 3 +5.



так как уже четвертый член полученного знакочередующегося ряда, удовлетворяющего признаку Лейбница, меньше требуемой точности:
, поэтому его и следующие за ним члены можно отбросить.
Многие практически нужные определенные или несобственные интегралы не могут быть вычислены с помощью формулы Ньютона-Лейбница, ибо ее применение связано с нахождением первообразной, часто не имеющей выражения в элементарных функциях. Бывает также, что нахождение первообразной возможно, но излишне трудоемко. Однако если подынтегральная функция раскладывается в степенной ряд, а пределы интегрирования принадлежат интервалу сходимости этого ряда, то возможно приближенное вычисление интеграла с наперед заданной точностью.

Пример №3 . Вычислить интеграл ∫ 0 1 4 sin (x) x с точностью до 10 -5 .
Решение . Соответствующий неопределенный интеграл не может быть выражен в элементарных функциях, т.е. представляет собой «неберущийся интеграл». Применить формулу Ньютона-Лейбница здесь нельзя. Вычислим интеграл приближенно.
Разделив почленно ряд для sinx на x , получим:

Интегрируя этот ряд почленно (это возможно, так как пределы интегрирования принадлежат интервалу сходимости данного ряда), получаем:

Так как полученный ряд удовлетворяет условиям Лейбница и достаточно взять сумму первых двух членов, чтобы получить искомое значение с заданной точностью.
Таким образом, находим
.

Пример №4 . Вычислить интеграл ∫ 0 1 4 e x 2 с точностью до 0,001.
Решение .
. Проверим, можем ли мы отбросить остаток после второго члена полученного ряда.
≈0.0001<0.001. Следовательно, .

Пусть требуется вычислить определенный интеграл $\int\limits_{a}^{b}f(x)dx$ с некоторой наперёд заданной точностью $\varepsilon$. Если непосредственное нахождение первообразной подынтегральной функции $f(x)$ чересчур громоздко, или же интеграл $\int f(x)dx$ вообще не берётся, то в этих случаях можно использовать функциональные ряды. В частности, применяются ряды Маклорена, с помощью которых получают разложение в степенной ряд подынтегральной функции $f(x)$. Именно поэтому в работе нам будет нужен документ с рядами Маклорена .

Степенные ряды, которые мы и станем использовать, сходятся равномерно, поэтому их можно почленно интегрировать по любому отрезку, лежащему внутри интервала сходимости. Схема решения подобных задач на вычисление интегралов с помощью рядов проста:

  1. Разложить подынтегральную функцию в функциональный ряд (обычно в ряд Маклорена).
  2. Произвести почленное интегрирование членов записанного в первом пункте функционального ряда.
  3. Вычислить сумму полученного во втором пункте числового ряда с заданной точностью $\varepsilon$.

Задачи на вычисление интегралов с помощью рядов популярны у составителей типовых расчётов по высшей математике. Поэтому в данной теме мы разберём пять примеров, в каждом из которых требуется вычислить определенный интеграл с точностью $\varepsilon$.

Пример №1

Вычислить $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx$ с точностью до $\varepsilon=10^{-3}$.

Сразу отметим, что интеграл $\int e^{-x^2}dx$ не берётся, т.е. первообразная подынтегральной функции не выражается через конечную комбинацию элементарных функций. Иными словами, стандартными способами (подстановка, интегрирование по частям и т.д.) первообразную функции $e^{-x^2}$ найти не удастся.

Для таких задач есть два варианта оформления, поэтому рассмотрим их отдельно. Условно их можно назвать "развёрнутый" и "сокращённый" варианты.

Развёрнутый вариант оформления

ряд Маклорена :

$$e^x=1+x+\frac{x^2}{2}+\frac{x^3}{6}+\ldots$$

$$e^{-x^2}=1-x^2+\frac{\left(-x^2\right)^2}{2}+\frac{\left(-x^2\right)^3}{6}+\ldots=1-x^2+\frac{x^4}{2}-\frac{x^6}{6}+\ldots$$

Интегрируем полученное разложение на отрезке $\left$:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx=\int\limits_{0}^{\frac{1}{2}}\left(1-x^2+\frac{x^4}{2}-\frac{x^6}{6}+\ldots\right)dx=\\ =\left.\left(x-\frac{x^3}{3}+\frac{x^5}{10}-\frac{x^7}{42}+\ldots\right)\right|_{0}^{1/2}= \frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}-\frac{1}{42\cdot{2^7}}+\ldots$$

Получили сходящийся знакочередующийся ряд. Это значит, что если для вычисления приближенного значения заданного интеграла взять $k$ членов полученного ряда, то погрешность не превысит модуля $(k+1)$-го члена ряда.

Согласно условию, точность $\varepsilon=10^{-3}$. Так как $\frac{1}{42\cdot{2^7}}=\frac{1}{5376}<10^{-3}$, то для достижения требуемой точности достаточно ограничиться первыми тремя членами знакочередующегося ряда:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx\frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}=\frac{443}{960}.$$

Погрешность полученного равенства не превышает $\frac{1}{5376}$.

Однако суммировать обычные дроби - дело утомительное, поэтому чаще всего расчёты ведут в десятичных дробях:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx\frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}\approx{0{,}5}-0{,}0417+0{,}0031\approx{0{,}461}.$$

Разумеется, в этом случае нужно учитывать погрешность округления. Первое слагаемое (т.е. $0{,}5$) было рассчитано точно, поэтому никакой погрешности округления там нет. Второе и третье слагаемые брались с округлением до четвёртого знака после запятой, посему погрешность округления для каждого из них не превысит $0,0001$. Итоговая погрешность округления не превысит $0+0{,}0001+0{,}0001=0{,}0002$.

Следовательно, суммарная погрешность равенства $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx{0{,}461}$ не превысит $0{,}0002+\frac{1}{5376}<10^{-3}$, т.е. значение интеграла вычислено с требуемой точностью.

Сокращённый вариант оформления

Запишем разложение функции $e^x$ в ряд Маклорена :

$$e^x=\sum\limits_{n=0}^{\infty}\frac{x^n}{n!}$$

Данное разложение верно при всех $x\in{R}$. Подставим $-x^2$ вместо $x$:

$$e^{-x^2}=\sum\limits_{n=0}^{\infty}\frac{\left(-x^2\right)^n}{n!}=\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{x}^{2n}}{n!}$$

Интегрируем полученный ряд на отрезке $\left$:

$$\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx=\int\limits_{0}^{\frac{1}{2}}\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{x}^{2n}}{n!}dx= \sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!}\int\limits_{0}^{\frac{1}{2}}x^{2n}dx=\\ =\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!}\left.\frac{x^{2n+1}}{2n+1}\right|_{0}^{1/2}= \sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot\left(\frac{1}{2}\right)^{2n+1}}{n!\cdot(2n+1)}= \sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!\cdot(2n+1)\cdot{2^{2n+1}}}$$

$$\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n!\cdot(2n+1)\cdot{2^{2n+1}}}=\frac{1}{2}-\frac{1}{24}+\frac{1}{320}-\frac{1}{5376}+\ldots$$

Все рассуждения, что были сделаны относительно погрешностей в развёрнутом варианте оформления остаются в силе, т.е. $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx\frac{1}{2}-\frac{1}{3\cdot{2^3}}+\frac{1}{10\cdot{2^5}}\approx{0{,}461}$.

Чем сокращённый вариант записи лучше развёрнутого?

Во-первых, нам не нужно угадывать, сколько членов ряда взять в изначальном разложении, чтобы вычислить определенный интеграл с заданной точностью. Например, мы записали в самом начале решения:

$$e^{-x^2}=1-x^2+\frac{x^4}{2}-\frac{x^6}{6}+\ldots$$

Однако почему мы решили, что нужно взять именно четыре члена ряда? А вдруг нужно взять два члена ряда или пять, или сто? Если бы только шестой член ряда оказался меньше чем $\varepsilon$, - что тогда? А тогда пришлось бы возвращаться в самое начало решения, добавлять ещё пару членов ряда и интегрировать их. А если и этого не хватит, то проделать эту процедуру ещё раз.

Сокращённый вид записи таким недостатком не страдает. Мы получаем числовой ряд, записанный в общем виде, поэтому можем брать столько его членов, сколько потребуется.

Исходя из вышеперечисленных причин, я предпочитаю именно сокращённый способ записи. В дальнейнем все решения в этой теме будут оформлены в сокращённой форме.

Ответ : $\int\limits_{0}^{\frac{1}{2}}e^{-x^2}dx\approx{0{,}461}$.

Пример №2

Вычислить определённый интеграл $\int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx$ с точностью до $\varepsilon=10^{-3}$, разложив подынтегральную функцию в ряд Маклорена и проинтегрировав почленно.

Начнём с разложения подынтегральной функции $\frac{1-\cos\frac{5x}{3}}{x}$ в ряд Маклорена. Запишем разложение функции $\cos{x}$ в ряд Маклорена :

$$\cos{x}=\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{x}^{2n}}{(2n)!}$$

Данное разложение верно при всех $x\in{R}$. Подставим вместо $x$ дробь $\frac{5x}{3}$:

$$\cos{\frac{5x}{3}}=\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{\left(\frac{5x}{3}\right)}^{2n}}{(2n)!}= \sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}.$$

Теперь разложим $1-\cos\frac{5x}{3}$:

$$ 1-\cos\frac{5x}{3}=1-\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}} $$

Забирая из суммы $\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}$ первый член, получим: $\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}=1+\sum\limits_{n=1}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}$. Следовательно:

$$ 1-\sum\limits_{n=0}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}=1-\left(1+\sum\limits_{n=1}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}\right)=\\ =-\sum\limits_{n=1}^{\infty}\frac{(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}} =\sum\limits_{n=1}^{\infty}\frac{-(-1)^n\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}=\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}. $$

Последнее, что остаётся - это разделить на $x$:

$$ \frac{1-\cos\frac{5x}{3}}{x}=\frac{1}{x}\cdot\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n}}{3^{2n}\cdot{(2n)!}}= \sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n-1}}{3^{2n}\cdot{(2n)!}}. $$

Интегрируем данное разложение на отрезке $\left$:

$$ \int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx=\int\limits_{0}^{\frac{1}{5}}\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}\cdot{x}^{2n-1}}{3^{2n}\cdot{(2n)!}}dx= \sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}}{3^{2n}\cdot{(2n)!}}\int\limits_{0}^{\frac{1}{5}}{x}^{2n-1}dx=\\ =\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}\cdot{5^{2n}}}{3^{2n}\cdot{(2n)!}}\cdot\left.\frac{x^{2n}}{2n}\right|_{0}^{1/5}= \sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{{2n}\cdot 3^{2n}\cdot{(2n)!}} $$

Получили знакочередующийся ряд. Запишем несколько первых членов этого ряда (до тех пор, пока записанный член не станет меньше $\varepsilon$):

$$\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{{2n}\cdot 3^{2n}\cdot{(2n)!}}=\frac{1}{36}-\frac{1}{7776}+\ldots$$

Так как $\frac{1}{7776}<\varepsilon$, то для вычисления интеграла с точностью $\varepsilon$ достаточно первого члена полученного числового ряда:

$$\int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx\approx\frac{1}{36}\approx{0{,}028}.$$

Ответ : $\int\limits_{0}^{0{,}2}\frac{1-\cos\frac{5x}{3}}{x}dx\approx{0{,}028}$.

Продолжение темы вычисления интегралов с помощью рядов Маклорена продолжим во

На примере полученных нами конкретных разложений мы разъясним, как бесконечные ряды могут быть использованы для целей приближенных вычислений. Предпошлем ряд общих замечаний.

Если неизвестное нам число А разложено в ряд:

где - легко вычисляемые (обыкновенно рациональные) числа, и мы положим приближенно:

то поправка на отбрасывание всех остальных членов выразится остатком

При достаточно большом и эта погрешность станет сколь угодно малой, так что воспроизведет А с любой наперед заданной точностью.

Мы заинтересованы в возможности просто производить оценку остатка это позволило бы нам и вовремя остановиться при вычислении последовательных частичных сумм, когда уже будет получено приближение требуемой точности.

Если рассматриваемый ряд оказывается знакопеременным и притом с монотонно убывающими по абсолютной величине членами («цейбницевского типа»), то, как мы видели , остаток имеет знак своего первого члена и по абсолютной величине меньше его. Эта оценка в смысле простоты не оставляет желать лучшего.

Несколько сложнее обстоит дело в случае положительного ряда.

Тогда обыкновенно стараются найти легко суммируемый положительный же ряд, члены которого были бы больше членов интересующего нас остатка, и оценивают остаток суммой этого ряда.

Например, для ряда - можно получить:

[эта оценка совпадает с оценкой сверху, полученной в 373 (11) с помощью интегрирования], а для ряда

[этой оценкой мы фактически и пользовались при вычислении числа в 37].

Обыкновенно ищется десятичное приближение числа А, в то время как члены ряда могут и не быть выражены десятичными дробями. При обращении их в десятичную дробь, округление их служит источником новой погрешности, которую также следует учесть.

Наконец, отметим, что далеко не всякий ряд, имеющий суммой интересующее нас число А, пригоден для фактического вычисления этого числа (даже если его члены просты, и оценка остатка производится легко). Вопрос - в быстроте сходимости, т. е. в быстроте приближения частичной суммы к числу А.

Возьмем для примера ряды [см. 404 (16) и 405 (18)]:

дающие соответственно разложение чисел - и Для того чтобы с их помощью вычислить эти числа, скажем, с точностью до нужно было бы сложить пятьдесят тысяч членов в первом случае и сто тысяч - во втором; это, конечно, осуществимо лишь с помощью быстродействующих вычислительных машин.

Ниже мы без особого труда вычислим упомянутые числа даже с большей точностью, но использовав более подходящие рады.

На данном уроке мы рассмотрим первую, наиболее простую задачу, для решения которой потребуются самые элементарные знания о рядах, таблица разложений функций в степенные ряды и микрокалькулятор. Как вариант, пойдёт Эксель (если умеете управляться с его функциями). Вычислительные задачи требуют повышенной концентрации внимания, поэтому к изучению статьи рекомендую подойти в хорошей физической форме и со свежей головой:

Существует 2 типа рассматриваемой задачи, с которыми мы на самом деле уже сталкивались ранее, в частности при вычислении интеграла по формуле трапеций и методом Симпсона . Тип первый:

Пример 1

Используя разложение функции в ряд, вычислить число , ограничившись 5 членами разложения. Результат округлить до 0,001. Провести вычисления на калькуляторе и найти абсолютную погрешность вычислений.

Решение : прежде всего, выбираем подходящее табличное разложение функции . Очевидно, что в нашем случае необходимо взять следующий ряд:
, который сходится при любом значении «икс».

Кратко повторим, что такое сходимость функционального ряда : чем больше слагаемых мы рассмотрим, тем точнее функция-многочлен будет приближать функцию . Действительно, график параболы совсем не напоминает экспоненту и график кубической функции тоже далёк от идеала, но если взять 50-100 членов ряда, то картина в корне поменяется. И, наконец, график бесконечного многочлена совпадёт с графиком экспоненциальной функции .

Примечание : в теории даже есть такой подход и определение: функция – это сумма функционального ряда .

В условии прямо сказано, что нужно просуммировать 5 первых членов ряда, причём, результат следует округлить до 0,001. И поэтому проблем здесь никаких:

Вычислим более точное значение с помощью микрокалькулятора:

Абсолютная погрешность вычислений:
– ну что же, вполне и вполне неплохо. Но бывает лучше.

Ответ :

Теперь рассмотрим нескольку другую разновидность задания:

Пример 2

Используя разложение функции в ряд, вычислить приближённо с точностью до 0,001.

! Примечание : иногда аргумент бывает выражен в градусах, в таких случаях его необходимо перевести в радианы .

Давайте вспомним смысл выражения «с точностью до 0,001». Оно обозначает, что наш ответ должен отличаться от истины не более чем на 0,001.

Решение : используя табличное разложение , запишем несколько членов соответствующего ряда, при этом округление лучше проводить с «запасом» – до 5-6 знаков после запятой:

Сколько членов ряда следует просуммировать для достижения требуемой точности? Для сходящихся знакочередующихся рядов справедлив следующий критерий :члены следует суммировать до тех пор, пока они по модулю больше заданной точности. Первый же меньший вместе со всем «хвостом» подлежит утилизации. В данном примере таковым является 4-й член: , поэтому:

– с округлением финального результата до требуемой точности.

Ответ : с точностью до 0,001

Наверное, все понимают, почему она гарантирована: здесь к отрицательному 4-му члену прибавляется мЕньшее по модулю число , затем из результата вычитается ещё более малое число – и так далее до бесконечности. Образно говоря, конструкция напоминает маятник с затухающими колебаниями, где – самый большой размах в отрицательную сторону, «затмевающий» собой все остальные движения.

Очевидно, что для сходящихся положительных рядов (ближайший пример – Пример 1) рассмотренный критерий некорректен. Условно говоря, если 0,00034 < 0,001, то сумма «хвоста» может запросто превзойти 0,001 (т.к. ВСЕ члены ряда положительны) . И к этому вопросу я ещё вернусь позже:

Пример 3

Пример 4

Вычислить приближённо, используя первые два члена соответствующего разложения. Оценить абсолютную погрешность вычислений.

Это примеры для самостоятельного решения. Разумеется, выгодно сразу же найти чтобы эффективно контролировать ход решения.

И возникает вопрос: зачем заниматься такими нелепыми вещами, если есть калькуляторы, расчётные программы? Отчасти я дал ответ на уроке Приближенные вычисления с помощью дифференциала . Не так уж и давно калькулятор был большой редкостью, не говоря о такой роскоши, как клавиши с надписями и т.д. В гостевой книге сайта одна из посетительниц поделилась воспоминаниями, как все расчёты своего диплома проводила с помощью математических таблиц и логарифмической линейки. А такой инструментарий наряду с механическими счётами сегодня займут место разве что в музее истории математики.

Резюме таково – мы решаем устаревшую задачу. Насущный же практический смысл состоит в том, что её нужно решить =) Ну, может ещё по информатике будет полезно кому – приближенная сумма с наперёд заданной точностью элементарно алгоритмизируется циклом. Правда, какой-нибудь Паскаль довольно быстро сломается, поскольку факториал растёт семимильными шагами.

Кроме того, есть ещё одно очень важное и актуальное приложение, имеющее прикладное значение, но этот секрет будет раскрыт по ходу урока;-) Выдвигайте гипотезы, если догадаетесь – респект.

Также не следует упускать из внимания область сходимости предлагаемых рядов, разложения синуса, косинуса и экспоненты – да, сходятся при любом «икс», но разобранные примеры не должны усыплять бдительность! Простейшая иллюстрация – арктангенс и его разложение . Если попытаться вычислить, скажем, значение , то легко заметить неограниченный рост (по модулю) членов ряда, который не приведёт нас к какому бы то ни было конечному , и тем более приближённому значению. А всё потому, что не входит в область сходимости данного разложения.

Разберём более трудные задания:

Пример 5

Вычислить с точностью до 0,01

Решение : щёлкаем по клавишам калькулятора: . И думаем, как выполнить приближённые вычисления с помощью ряда. В ситуациях с корнем дело сводится к биномиальному разложению с гарантированным интервалом сходимости .

Пытаемся представить наш радикал в виде :

И всё бы было хорошо, но только значение не входит в область сходимости рассматриваемого биномиального ряда, то есть конструкция не годится для вычислений – произойдёт такой же несчастный случай, как с рассмотренным выше .

Как быть? Ещё раз смотрим на значение и замечаем, что оно близко к «тройке». В самом деле: . Используя замечательного соседа, проводим следующее типовое преобразование: под корнем выделяем число 27, искусственно выносим его за скобки и далее выносим из-под корня:

Вот теперь всё тип-топ: число принадлежит интервалу сходимости . Но в качестве «побочного эффекта» возникает необходимость поправить точность вычислений. Ведь когда мы подсчитаем члены разложения , то будем обязаны домножить каждое число на «тройку». И по этой причине изначально требуемую точность 0,01 нужно устрожить в три раза: .

Итак, используем ряд , в котором . Не забываем проверить по таблице разложений , не подпадает ли наш пример под какой-нибудь частный случай биномиального разложения. Нет. А, значит, придётся работать ручками:

Тут для достижения необходимой точности (заметьте, что члены начали знакочередоваться!) хватило трёх слагаемых, и четвёртого монстра считать не было смысла. Но «про запас» всегда стараемся расписать побольше членов ряда. Если поленитесь и не хватит слагаемых – будете заново переписывать всё задание.

Ответ : с точностью до 0,001

Да, вычисления, конечно, не подарочные, но что поделать….

Более простая вариация на ту же тему для самостоятельного решения:

Пример 6

Вычислить , ограничившись первыми тремя членами ряда. Результат округлить до 3 знаков после запятой.

Образец оформления задачи в конце урока. И не забываем вновь обратиться к вычислительной технике: .

Что студент с нетерпением ждёт изо дня в день? Логарифмы:

Пример 7

Вычислить с точностью до 0,001

Решение : сначала, как всегда, узнаем ответ: .

Очевидно, что здесь нужно использовать разложение

И это действительно возможно, т.к. значение входит в область сходимости данного ряда.

Считаем:

Стоп. Что-то здесь не так. Сойтись-то ряд сойдётся, но такими темпами вычисления могут затянуться до скончания века. И научный тык в неравенство подсказал, что этот конец наступит после счастливого номера .

Таким образом, ряд сходится довольно медленно и пригоден для вычислений разве что и других логарифмов, аргумент которых достаточно близок к единице.

В целях значительного ускорения процесса несложно вывести следующее разложение:
с областью сходимости

Приятная вещь состоит в том, что всякое положительное число (кроме единицы) можно представить в виде . Преобразуем аргумент логарифма в обыкновенную дробь: и решим следующее уравнение:

Проверка:

«Заряжаем»:

И теперь у нас обнаружилась другая проблемка – ряд-то, оказывается, положительный , и поэтому здесь нельзя указать и отбросить весь «хвост». Вдруг он в своей сумме окажется больше, чем 0,001? В этой связи используем более хитрый метод оценки. Сохранив «на всякий случай» подозрительно большой 3-й член, рассмотрим остаток ряда:

Числа 9, 11, 13, … в знаменателях меняем на 7 – тем самым только увеличивая члены, а значит, и всю сумму остатка:


По-научному, это называется подбором мажорантного сходящегося ряда (в данном случае – геом. прогрессии), сумму которого легко отыскать (или которая известна). И план оказался не только выполнен, но и перевыполнен! Отбрасывая все члены ряда, начиная с 4-го, будет гарантирована точность 0,00002! Впрочем, по условию результат всё равно нужно округлить до трёх знаков после запятой:

Ответ : с точностью до 0,001

Ну и осталось с чувством голубого морального удовлетворения свериться с более точным значением .

…А может быть, было проще вычислить сумму 12 членов медленно сходящегося ряда? =) Впрочем, в следующем задании такой возможности уже не будет в принципе:

Пример 8

Вычислить с точностью до 0,001

– по той причине, что значение не входит в область сходимости ряда .

Дерзайте!

Статья начиналась с приближённого вычисления числа «е», и закончим мы её другой знаменитой константой:

Приближённое вычисление числа с помощью ряда

О «пи» исписаны километры бумаги и сказаны миллионы слов, поэтому я не буду загружать вас историей, теорией и гипотезами, если интересно (а это и на самом деле интересно), обратитесь, например, к Википедии. Данное число обладает бесконечным количеством знаков после запятой: , и теория рядов предоставляет один из эффективных способов нахождения этих цифр.

Здесь полезно иметь в виду приведенные в предыдущем параграфе раз­ложения в степенные ряды функций e x , shx, chx, sinx, cosx, (1+x) m , ln(1+x), arctgx.

Для вычисления логарифмов эффективна формула

Ряд в правой части равенства сходится тем быстрее, чем больше t .

Для вычисления приближенного значения функции f(х) в ее разложении в степенной ряд сохраняют первые п членов (п- -конечная величина), а остальные члены отбрасывают. Для оценки погрешности найденного прибли­женного значения нужно оценить сумму отброшенных членов. Если данный ряд знакопостоянный, то ряд, составленный из отброшенных членов, сравни­вают с бесконечно убывающей геометрической прогрессией. В случае знако­переменного ряда, члены которого удовлетворяют признаку Лейбница, исполь­зуется оценка < где - первый из отброшенных членов ряда.

403.

0 < x < n+1

∆ Погрешность этого приближенного равенства определяется суммой членов, следующих после х п /п! в разложении е х:

Заменив каждый из сомножителей n+2, n+3, n+4, ... меньшей вели­чиной n+1 , получим неравенство

т.е.

404 . Вычислить с точностью до 0,00001.

∆ Используя разложение е х в ряд, получаем

Определим число n так, чтобы погрешность приближенного равенства

не превышала 0,00001. Воспользуемся оценкой погрешности, данной в преды­дущем, примере. Полагаем х=1/2 ; тогда

т.е.

Путем подбора определим, при каком значении п будет выполняться неравенство R п < 0,00001. Полагая, например, n= 3 , получаем R 3 < 1/(8·6·7), т. е. R 3 < 1/336. Пусть, далее, n = 5 ; отсюда R 5 < 1/(32·120·11), т. е. R 5 < 1/42240. Пусть, наконец, n= 6 ; отсюда R 6 < 1/(64·720·13) , т. е. R 6 < 1/100000. Итак, принимаем п = 6:

Суммируем слагаемые:

0,020833 (в 6 раз меньше предыдущего слагаемого)
0,002604 (« 8 « « « «)

0,000260 (« 10 « « « «)

0.000022 (« 12 « « « «)

Значит, Каждое слагаемое мы вычислили с точностью до 0,000001, чтобы при суммировании не получить погрешности, превышаю­щей 0,00001.

405. Вычислить сточностью до 0,00001.
∆ Имеем

Воспользуемся приближенным равенством

Мы взяли 5 слагаемых, так как знакопеременный ряд удовлетворяет усло­виям признака Лейбница, а поэтому допускаемая погрешность по абсолютной величине должна быть меньше первого из отброшенных членов ряда. Первый из отброшенных членов равен 1/(5!5 5). Нетрудно видеть, что 1/(5!5 5) < 0,00001.

Произведя вычисления, в результате получаем . ▲

406. Пользуясь разложением соsx в ряд, вычислить соs 18° с точностью до 0,0001.



соs 18°= ;

Достаточно взять три члена ряда, так как (1/6!)-(π/10) 6 < 0,0001. Тогда

. ▲

407. Вычислить с точностью до 0,0001.

∆ Воспользуемся разложением (1+x) m в ряд, полагая x = 0,1, m=1/5 .

Четвертый и следующие за ним члены отбрасываем, так как четвертый член меньше 0,0001. Итак,

408. Вычислить с точностью до 0,001.

∆ Так как 5 3 является ближайшим к числу 130 кубом целого числа, то целесообразно число 130 представить в виде суммы двух слагаемых: 130 = 5 3 + 5. Тогда

Четвертый член меньше 0,001, поэтому его и следующие за ним члены можно отбросить. Итак, 5 + 0,0667-0,0009, т. е. 5,066. ▲

409. Вычислить ln1,04 с точностью до 0,0001.
∆ Воспользуемся разложением ln(1+x ) в ряд:

откуда ln1,04≈ 0,0392. ▲

410. В прямоугольном треугольнике катеты равны 1 и 5 см. Определить острый угол треугольника, лежащий против мень­шего катета, с точностью до 0,001 радиана.

∆ Так как tgα=1/5, то α=arctg(1,5). Воспользуемся разложением

откуда α ≈ 0,2-0,0027, т. е. α ≈ 0,197. ▲

411. Оценить погрешность приближенного равенства

∆ Задача сводится к оценке суммы остатка ряда

Заменив каждый из множителей 2n+З, 2n + 5, 2n+7, ... меньшим числом 2n+1, получим неравенство

Просуммируем бесконечно убывающую геометрическую прогрессию в квад­ратных скобках:

т.е.

412. Вычислить ln2 с точностью до 0,0001.

∆ В формуле для определения ln(t + 1) и неравенстве для оценки R п полагаем t= 1:

Путем подбора определим п так, чтобы выполнялось неравенство R n < 0,0001. Если n= 2, то R 2 < 1/(4∙5∙3 3); R 2 < 1/540; если n = 3, то R 3 < 1(4∙7∙3 5); R 3 < 1/6804; если n= 4, то R 4 < 1/(4∙9∙3 7); R 4 < 1/10000.

Итак, n = 4 и для вычисления ln 2 получаем приближенное равенство
в разложении аrctg х.