Как геометрически определить тепловой эффект. Расчет стандартных тепловых эффектов химических реакций по стандартным теплотам образования веществ, участвующих в реакции

Теплотой реакции (тепловым эффектом реакции) называется количество выделенной или поглощённой теплоты Q. Если в ходе реакции теплота выделяется, такая реакция называется эк­зотермической, если теплота поглощается, реакция называется эндотермической.

Теплота реакции определяется, исходя из первого закона (начала) термодинамики, матема­тическим выражением которого в его наиболее простой форме для химических реакций является урав­нение:

Q = ΔU + рΔV (2.1)

где Q - теплота реакции, ΔU - изменение внутренней энергии, р -давление, ΔV - изменение объёма.

Термохимический расчёт заключается в определении теплового эффекта реакции. В соот­ветствии с уравнением (2.1) численное значение теплоты реакции зависит от способа её проведения. В изохорном процессе, проводимом при V=const, теплота реакции Q V = ΔU, в изобарном процессе при p=const тепловой эффект Q P = ΔH. Таким образом, термохимический расчёт заключаетсяв определении величины изменения или внутренней энергии, или энтальпии в ходе реакции. Поскольку подавляющее большинство реакций протекает в изобарных условиях (например, это все реакции в открытых сосу­дах. протекающие при атмосферном давлении), при приведении термохимических расчётов практическивсегда производится расчёт ΔН. Если ΔН<0, то реакция экзотермическая, если же ΔН>0, то ре­акция эндотермическая.

Термохимические расчёты производятся, используя или закон Гесса, согласно которому тепло­вой эффект процесса не зависит от его пути, а определяется лишь природой и состоянием исход­ных веществ и продуктов процесса, или, чаще всего, следствие из закона Гесса: тепловой эффект реакции равен сумме теплот (энтальпий) образования продуктов за вычетом суммы теплот (эн­тальпий) образования реагентов.

В расчётах по закону Гесса используются уравнения вспомогательных реакций, тепловые эффек­ты которых известны. Суть операций при расчётах по закону Гесса заключается в том, что над уравне­ниями вспомогательных реакций производят такие алгебраические действия, которые приводят к урав­нению реакции с неизвестным тепловым эффектом.

Пример 2.1. Определение теплоты реакции: 2СО + O 2 = 2СO 2 ΔН - ?

В качестве вспомогательных используем реакции: 1)С + О 2 = С0 2 ; ΔН 1 = -393,51 кДж и 2)2С + О 2 = 2СО; ΔН 2 = -220,1 кДж, где ΔН / и ΔН 2 - тепловые эффекты вспомогательных реакций. Используя уравнения этих реакций, можно получить уравнение заданной реакции, если вспомогатель­ное уравнение 1) умножить на два и из полученного результата вычесть уравнение 2). Поэтому неиз­вестная теплота заданной реакции равна:


ΔН = 2 ΔH 1 - ΔН 2 = 2(-393,51) - (-220,1) = -566,92 кДж.

Если в термохимическом расчёте используется следствие из закона Гесса, то для реакции, выра­женной уравнением aA+bB=cC+dD, пользуются соотношением:

ΔН =(сΔНобр,с + dΔHoбp D) - (аΔНобр A + bΔН обр,в) (2.2)

где ΔН - теплота реакции; ΔН o бр - теплоты (энтальпии) образования, соответственно, продуктов реак­ции С и D и реагентов А и В; с, d, a, b - стехиометрические коэффициенты.

Теплотой (энтальпией) образования соединения называется тепловой эффект реакции, в ходе которой образуется 1 моль этого соединения из простых веществ, находящихся в термодина­мически устойчивых фазах и модификациях 1 *. Например, теплота образования воды в парообразном состоянии равна половине теплоты реакции, выражаемой уравнением: 2Н 2 (г) + О 2 (г) = 2Н 2 О(г). Раз­мерность теплоты образования - кДж/моль.

В термохимических расчётах теплоты реакций, как правило, определяются для стандартных ус­ловий, для которых формула (2.2) приобретает вид:

ΔН°298 = (сΔН° 298,обр,С + dΔH° 298, o 6 p , D) - (аΔН° 298,обр A + bΔН° 298,обр,в) (2.3)

где ΔН° 298 - стандартная теплота реакции в кДж (стандартность величины указывается верхним индек­сом "0") при температуре 298К, а ΔН° 298,обР - стандартные теплоты (энтальпии) образования также при температуре 298К.Значения ΔН° 298 .обР .определены для всех соединений и являются табличны­ми данными. 2 * - см. таблицу приложения.

Пример 2.2. Расчёт стандартной теплоты р еакции, выраженной уравнением:

4NH 3 (r) + 5O 2 (г) = 4NO(г) + 6Н 2 О(г).

Согласно следствию из закона Гесса записываем 3* :

ΔН 0 298 = (4 ΔН 0 298. o б p . No + 6 ΔH 0 298. одр.Н20) - 4 ΔH 0 298 обр. NH з. Подставив табличные значения стандартных теплот образования соединений, представленных в уравнении, получим: ΔН°298 = (4(90,37) + 6(-241,84)) - 4(-46,19) = - 904,8 кДж.

Отрицательный знак теплоты реакции указывает на экзотермичность процесса.

В термохимии тепловые эффекты принято указывать в уравнениях реакций. Такиеуравнения с обозначенным тепловым эффектом называются термохимическими. Например, термохимическое уравнение рассмотренной в примере 2.2 реакции записывается:

4NH 3 (г) + 50 2 (г) = 4NО(г) + 6Н 2 0(г); ΔН° 29 8 = - 904,8 кДж.

Если условия отличаются от стандартных, в практических термохимических расчётах допускает­ся использование приближения:ΔН ≈ ΔН° 298 (2.4) Выражение(2.4) отражает слабую зависимость величины теплоты реакции от условий её протекания.

В термохимии количество теплоты Q , которая выделяется или поглощается в результате химической реакции, называется тепловым эффектом. Реакции, протекающие с выделением тепла, называются экзотермическими (Q>0 ), а с поглощением тепла - эндотермическими (Q<0 ).

В термодинамике соответственно процессы, при которых теплота выделяется, называются экзотермическими , а процессы, при которых теплота поглощается - эндотермическими .

Согласно следствию из первого закона термодинамики для изохорно-изотермических процессов тепловой эффект равен изменению внутренней энергии системы .

Поскольку в термохимии применяется обратный знак по отношению к термодинамике , то .

Для изобарно-изотермических процессов тепловой эффект равен изменению энтальпии системы .

Если DH > 0 - процесс протекает с поглощением теплоты и является эндотермическим.

Если DH < 0 - процесс сопровождается выделением теплоты и является экзотермическим.

Из первого начала термодинамики вытекает закон Гесса :

тепловой эффект химических реакций зависит только от вида и состояния исходных веществ и конечных продуктов, но не зависит от пути перехода из исходного состояния в конечное.

Следствием из этого закона является правило, согласно которому с термохимическими уравнениями можно производить обычные алгебраические действия.

В качестве примера рассмотрим реакцию окисления угля до СО 2 .

Переход от исходных веществ к конечному можно осуществить, непосредственно сжигая уголь до СО 2:

С (т) + О 2 (г) = СО 2(г).

Тепловой эффект этой реакции ΔН 1 .

Можно провести этот процесс в две стадии (рис. 4). На первой стадии углерод сгорает до СО по реакции

С (т) + О 2 (г) = СО (г) ,

на второй СО догорает до СО 2

СО (т) + О 2 (г) = СО 2(г) .

Тепловые эффекты этих реакций соответственно ΔН 2 иΔН 3 .

Рис. 4. Схема процесса горения угля до СО 2

Все три процесса находят широкое применение в практике. Закон Гесса позволяет связать тепловые эффекты этих трех процессов уравнением:

ΔН 1 Н 2 + ΔН 3 .

Тепловые эффекты первого и третьего процессов можно сравнительно легко измерить, но сжигание угля до окиси углерода при высоких температурах затруднительно. Его тепловой эффект можно рассчитать:

ΔН 2 Н 1 - ΔН 3 .

Значения ΔН 1 и ΔН 2 зависят от вида применяемого угля. Величина ΔН 3 с этим не связана. При сгорании одного моля СО при постоянном давлении при 298К количество теплоты составляет ΔН 3 = -283,395 кДж/моль. ΔН 1 = -393,86 кДж/моль при 298К. Тогда при 298К ΔН 2 = -393,86 + 283,395 = -110,465кДж/моль.


Закон Гесса дает возможность вычислить тепловые эффекты процессов, для которых отсутствуют экспериментальные данные или для которых они не могут быть измерены в нужных условиях. Это относится и к химическим реакциям, и к процессам растворения, испарения, кристаллизации, адсорбции и др.

Применяя закон Гесса, следует строго соблюдать следующие условия:

В обоих процессах должны быть действительно одинаковые начальные состояния и действительно одинаковые конечные состояния;

Должны быть одинаковыми не только химические составы продуктов, но и условия их существования (температура, давление и т.д.) и агрегатное состояние, а для кристаллических веществ и кристаллическая модификация.

При расчетах тепловых эффектов химических реакций на основе закона Гесса обычно используют два вида тепловых эффектов - теплоту сгорания и теплоту образования.

Теплотой образования называется тепловой эффект реакции образования данного соединения из простых веществ.

Теплотой сгорания называется тепловой эффект реакции окисления данного соединения кислородом с образованием высших оксидов соответствующих элементов или соединения этих оксидов.

Справочные значения тепловых эффектов и других величин относят обычно к стандартному состоянию вещества.

В качестве стандартного состояния индивидуальных жидких и твердых веществ принимают состояние их при данной температуре и при давлении, равном одной атмосфере, а для индивидуальных газов - такое их состояние, когда при данной температуре и давлении, равном 1,01·10 5 Па (1атм.), они обладают свойствами идеального газа. Для облегчения расчетов справочные данные относят к стандартной температуре 298 К.

Если какой-нибудь элемент может существовать в нескольких модификациях, то в качестве стандартной принимают такую модификацию, которая является устойчивой при 298 К и атмосферном давлении, равном 1,01·10 5 Па (1атм.)

Все величины, относящиеся к стандартному состоянию веществ, отмечают верхним индексом в виде круга: . В металлургических процессах большинство соединений образуется с выделением теплоты, поэтому для них приращение энтальпии . Для элементов в стандартном состоянии величина .

Пользуясь справочными данными стандартных теплот образования веществ, участвующих в реакции, можно легко рассчитать тепловой эффект реакции.

Из закона Гесса следует: тепловой эффект реакции равен разности между теплотами образования всех веществ, указанных в правой части уравнения (конечных веществ или продуктов реакции), и теплотами образования всех веществ, указанных в левой части уравнения (исходных веществ), взятых с коэффициентами, равными коэффициентам перед формулами этих веществ в уравнении реакции:

где n - количество молей вещества, участвующих в реакции.

Пример. Рассчитаем тепловой эффект реакции Fe 3 O 4 + CO = 3FeO + CO 2 . Теплоты образования веществ, участвующих в реакции, составляют: для Fe 3 O 4 , для СО , для FeO , для CO 2 .

Тепловой эффект реакции:

Так как , реакция при 298К эндотермическая, т.е. идет с поглощением теплоты.

Все методы расчета тепловых эффектов основаны на уравнении Кирхгоффа в интегральной форме.

Чаще всего, в качестве первой температуры используют стандартную 298,15K.

Все методы расчета тепловых эффектов сводятся к способам взятия интеграла правой части уравнения.

Методы взятия интеграла:

I. По средним теплоемкостям. Данный метод является наиболее простым и наименее точным. В этом случае выражение под знаком интеграла заменяется на изменение средней теплоемкости, которая не зависит от температуры в выбранном диапазоне.

Средние теплоемкости табулированы и измерены для большинства реакций. Их легко рассчитать по справочным данным.

II. По Истинным теплоемкостям. (С помощью температурных рядов)

В этом методе подынтегральное выражение теплоемкости записывается как температурный ряд:

III. По высокотемпературным составляющим энтальпии. Данный метод получил большое распространение с развитием ракетной техники при расчете тепловых эффектов химических реакций при высоких температурах. Он основан на определении изобарной теплоемкости:

Высокотемпературная составляющая энтальпии. Она показывает, насколько изменится энтальпия индивидуального вещества при нагревании его на определенное количество градусов.

Для химической реакции записываем:

Таким образом:

Лекция №3.

План лекции:

1. II закон термодинамики, определение, математическая запись.

2. Анализ II закона термодинамики

3. Расчет изменения энтропии в некоторых процессах

Задача № 6

Вычислите среднюю теплоемкость вещества, приведенного в табл. 6, в интервале температур от 298 доТ К.

Таблица 6

Вещество

Вещество

Решение:

Рассмотрим расчет средней теплоемкости аммиака в интервале температур от 298 до 800 К.

Теплоемкость – это отношение количества теплоты, поглощаемой телом при нагревании, к повышению температуры, которым сопровождается нагревание. Для индивидуального вещества различают удельную (одного килограмма) и мольную (одного моля) теплоемкости.

Истинная теплоемкость

, (21)

где δ Q – бесконечно малое количество теплоты, необходимое для повышения температуры тела на бесконечно малую величину dT .

Средняя теплоемкость – это отношение количества теплоты Q к повышению температуры T = T 2 T 1 ,

.

Поскольку теплота не является функцией состояния и зависит от пути процесса, необходимо указывать условия протекания процесса нагревания. В изохорном и изобарном процессах для бесконечно малого изменения δ Q V = dU и δ Q p = dH , поэтому

и
. (22)

Связь между истинными изохорной (С V ) и изобарной (C p ) теплоемкостями вещества и его средними изохорной
и изобарной
теплоемкостями в интервале температур от Т 1 до Т 2 выражается уравнениями (23) и (24):

; (23)

. (24)

Зависимости истинной теплоемкости от температуры выражаются следующими эмпирическими уравнениями:

; (для неорганических веществ) (25)

. (для органических веществ) (26)

Воспользуемся справочником физико-химических величин. Выпишем коэффициенты (a, b, c) уравнения зависимости изобарной теплоемкости аммиака от температуры:

Таблица 7

Вещество

b ·10 3

c / ·10 –5

Запишем уравнение зависимости истинной теплоемкости аммиака от температуры:

.

Подставим это уравнение в формулу (24) и вычислим среднюю теплоемкость аммиака:

= 1/(800-298)
=

0,002 = 43,5 Дж/моль·К.

Задача №7

Для химической реакции, приведенной в табл. 2, постройте графики зависимостей суммы теплоемкостей продуктов реакции от температуры
и суммы теплоемкостей исходных веществ от температуры
. Уравнения зависимости
возьмите из справочника. Рассчитайте изменение теплоемкости в ходе химической реакции (
) при температурах 298 К, 400 К и Т К (табл. 6).

Решение:

Рассчитаем изменение теплоемкости при температурах 298 К, 400 К и 600 К на примере реакции синтеза аммиака:

Выпишем коэффициенты (a, b, c, с /) 1 уравнений зависимости истинной теплоемкости аммиака от температуры для исходных веществ и продуктов реакции с учетом стехиометрических коэффициентов . Вычислим сумму коэффициентов. Например, сумма коэффициентова для исходных веществ равна

= 27,88 + 3·27,28 = 109,72.

Сумма коэффициентов а для продуктов реакции равна

= 2·29,8 = 59,6.

=
=59,6 – 109,72 = –50,12.

Таблица 8

Вещество

b ·10 3

c / ·10 5

с·10 6

исходные

вещества

(
,
,
)

(
,
,
)

,
,

Таким образом, уравнение зависимости

для продуктов реакции имеет следующий вид:

= 59,60 + 50,96·10 –3 Т – 3,34·10 5 /Т 2 .

Для построения графика зависимости суммы теплоемкости продуктов реакции от температуры
рассчитаем сумму теплоемкостей при нескольких температурах:

При Т = 298 К

= 59,60 + 50,96·10 –3 · 298 – 3,34·10 5 /298 2 = 71,03 Дж/К;

При Т = 400 К
= 77,89 Дж/К;

При Т = 600 К
= 89,25 Дж/К.

Уравнение зависимости
для исходных веществ имеет вид:

= 109,72 + 14,05·10 –3 Т + 1,50·10 -5 /Т 2 .

Аналогично рассчитываем
исходных веществ при нескольких температурах:

При Т=298 К

=109,72 + 14,05·10 –3 · 298 + 1,50·10 5 /298 2 =115,60 Дж/К;

При Т = 400 К
= 116,28 Дж/К;

При Т = 600 К
= 118,57 Дж/К.

Далее рассчитываем изменение изобарной теплоемкости
в ходе реакции при нескольких температурах:

= –50,12 + 36,91·10 –3 Т – 4,84·10 5 /Т 2 ,

= –44,57 Дж/К;

= –38,39 Дж/К;

= –29,32 Дж/К.

По рассчитанным значениям строим графики зависимостей суммы теплоемкостей продуктов реакции и суммы теплоемкостей исходных веществ от температуры.

Рис 2. Зависимости суммарных теплоемкостей исходных веществ и продуктов реакции от температуры для реакции синтеза аммиака

В данном интервале температур суммарная теплоемкость исходных веществ выше суммарной теплоемкости продуктов, следовательно,
во всем интервале температур от 298 К до 600 К.

Задача №8

Вычислите тепловой эффект реакции, приведенной в табл. 2, при температуре Т К (табл. 6).

Решение:

Вычислим тепловой эффект реакции синтеза аммиака при температуре 800 К.

Зависимость теплового эффекта
реакции от температуры описываетзакон Кирхгоффа

, (27)

где
- изменение теплоемкости системы в ходе реакции. Проанализируем уравнение:

1) Если
> 0, т.е сумма теплоемкостей продуктов реакции больше суммы теплоемкостей исходных веществ, то> 0,. зависимость
возрастающая, и с повышением температуры тепловой эффект увеличивается.

2) Если
< 0, то< 0, т.е. зависимость убывающая, и с повышением температуры тепловой эффект уменьшается.

3) Если
= 0, то= 0, тепловой эффект не зависит от температуры.

В интегральном виде уравнение Кирхгоффа имеет следующий вид:

. (28)

а) если теплоемкость во время процесса не меняется, т.е. сумма теплоемкостей продуктов реакции равна сумме теплоемкостей исходных веществ (
), то тепловой эффект не зависит от температуры

= const.

б) для приближенного расчета можно пренебречь зависимостью теплоемкостей от температуры и воспользоваться значениями средних теплоемкостей участников реакции (
). В этом случае расчет производится по формуле

в) для точного расчета необходимы данные по зависимости теплоемкости всех участников реакции от температуры
. В этом случае тепловой эффект рассчитывают по формуле

(30)

Выписываем справочные данные (табл.9) и вычисляем изменения соответствующих величин для каждого столбца по аналогии с задачей №7). Полученные данные используем для расчета:

Приближенно:

= –91880 + (–31,88)(800 – 298) = –107883,8 Дж = – 107, 88 кДж.

= –91880 + (–50,12)(800 – 298) + 1/2·36,91·10 -3 (800 2 – 298 2) +

– (–4,84·10 5)(1/800 – 1/298) = – 107815 Дж = – 107,82 кДж.

Для реакции синтеза аммиака изменение теплоемкости в ходе реакции
< 0 (см. задачу №7). Следовательно< 0, с повышением температуры тепловой эффект уменьшается.

Таблица 9

Вещество

Сумма для продуктов реакции

Сумма для исходных веществ

Изменение в ходе реакции

,


=


=

=

, Дж/(моль·К)


=


=

=


=


=

=


=


=

=


=


= 1,5

=


= 0


= 0

= 0

Подобно тому, как одной из физических характеристик человека является физическая сила, важнейшей характеристикой любой химической связи является сила связи, т.е. её энергия.

Напомним, что энергия химической связи – эта та энергия, которая выделяется при образовании химической связи или та энергия, которую нужно истратить, чтобы эту связь разрушить.

Химическая реакция в общем случае – это превращение одних веществ в другие. Следовательно, в ходе химической реакции происходит разрыв одних связей и образование других, т.е. превращения энергии.

Фундаментальный закон физики гласит, что энергия не возникает из ничего и не исчезает бесследно, а лишь переходит из одного вида в другой. В силу своей универсальности данный принцип, очевидно, применим и к химической реакции.

Тепловым эффектом химической реакции называется количество теплоты,

выделившееся (или поглотившееся) в ходе реакции и относимое к 1 моль прореагировавшего (или образовавшегося) вещества.

Тепловой эффект обозначается буквой Q и, как правило, измеряется в кДж/моль или в ккал/моль.

Если реакция происходит с выделением тепла (Q > 0), она называется экзотермической, а если с поглощением тепла (Q < 0) – эндотермической.

Если схематично изобразить энергетический профиль реакции, то для эндотермических реакций продукты находятся выше по энергии, чем реагенты, а для экзотермических – наоборот, продукты реакции располагаются ниже по энергии (более стабильны), чем реагенты.

Ясно, что чем больше вещества прореагирует, тем большее количество энергии выделится (или поглотится), т.е. тепловой эффект прямо пропорционален количеству вещества. Поэтому отнесение теплового эффекта к 1 моль вещества обусловлено нашим стремлением сравнивать между собой тепловые эффекты различных реакций.

Лекция 6. Термохимия. Тепловой эффект химической реакции Пример 1 . При восстановлении 8,0 г оксида меди(II) водородом образовалась металлическая медь и пары воды и выделилось 7,9 кДж теплоты. Вычислите тепловой эффект реакции восстановления оксида меди(II).

Решение . Уравнение реакции CuO (тв.) + H2 (г.) = Cu (тв.) + H2 O (г.) +Q (*)

Составим пропорцию при восстановлении 0,1 моль – выделяется 7,9 кДж при восстановлении 1 моль – выделяется x кДж

Откуда x = + 79 кДж/моль. Уравнение (*) принимает вид

CuO (тв.) + H2 (г.) = Cu (тв.) + H2 O (г.) +79 кДж

Термохимическое уравнение – это уравнение химической реакции, в котором указаны агрегатное состояние компонентов реакционной смеси (реагентов и продуктов) и тепловой эффект реакции.

Так, чтобы расплавить лед или испарить воду, требуется затратить определенные количества теплоты, тогда как при замерзании жидкой воды или конденсации водяного пара такие же количества теплоты выделяются. Именно поэтому нам холодно, когда мы выходим из воды (испарение воды с поверхности тела требует затрат энергии), а потоотделение является биологическим защитным механизмом от перегрева организма. Напротив, морозильник замораживает воду и нагревает окружающее помещение, отдавая ему избыточное тепло.

На данном примере показаны тепловые эффекты изменения агрегатного состояния воды. Теплота плавления (при 0o C) λ = 3,34×105 Дж/кг (физика), или Qпл. = - 6,02 кДж/моль (химия), теплота испарения (парообразования) (при 100o C) q = 2,26×106 Дж/кг (физика) или Qисп. = - 40,68 кДж/моль (химия).

плавление

испарение

обр ,298.

Лекция 6. Термохимия. Тепловой эффект химической реакции Разумеется, возможны процессы сублимации, когда твердое вещество

переходит в газовую фазу, минуя жидкое состояние и обратные процессы осаждения (кристаллизации) из газовой фазы, для них также возможно рассчитать или измерить тепловой эффект.

Ясно, что в каждом веществе есть химические связи, следовательно, каждое вещество обладает некоторым запасом энергии. Однако далеко не все вещества можно превратить друг в друга одной химической реакцией. Поэтому договорились о введении стандартного состояния.

Стандартное состояние вещества – это агрегатное состояние вещества при температуре 298 К, давлении 1 атмосфера в наиболее устойчивой в этих условиях аллотропной модицикации.

Стандартные условия – это температура 298 К и давление 1 атмосфера. Стандартные условия (стандартное состояние) обозначается индексом0 .

Стандартной теплотой образования соединения называется тепловой эффект химической реакции образования данного соединения из простых веществ, взятых в их стандартном состоянии. Теплота образования соединения обозначается символом Q 0 Для множества соединений стандартные теплоты образования приведены в справочниках физикохимических величин.

Стандартные теплоты образования простых веществ равны 0. Например, Q0 обр,298 (O2 , газ) = 0, Q0 обр,298 (C, тв., графит) = 0.

Например . Запишите термохимическое уравнение образования сульфата меди(II). Из справочника Q0 обр,298 (CuSO4 ) = 770 кДж/моль.

Cu (тв.) + S (тв.) + 2O2 (г.) = CuSO4 (тв.) + 770 кДж.

Замечание : термохимическое уравнение можно записать для любого вещества, однако надо понимать, что в настоящей жизни реакция происходит совершенно по-другому: из перечисленных реагентов образуются при нагревании оксиды меди(II) и серы(IV), но сульфат меди(II) не образуется. Важный вывод: термохимическое уравнение – модель, которая позволяет производить расчеты, она хорошо согласуется с другими термохимическими данными, но не выдерживает проверки практикой (т.е. неспособна правильно предсказать возможность или невозможность реакции).

(B j ) - ∑ a i × Q обр 0 ,298 i

Лекция 6. Термохимия. Тепловой эффект химической реакции

Уточнение . Для того, чтобы не вводить Вас в заблуждение, сразу добавлю, что химическая термодинамикаможет предсказывать возможность / невозможность реакции , однако для этого требуются более серьезные «инструменты», которые выходят за рамки школьного курса химии. Термохимическое уравнение по сравнению с этими приемами – первая ступенька на фоне пирамиды Хеопса – без него не обойтись, но высоко не подняться.

Пример 2 . Вычислите тепловой эффект конденсации воды массой 5,8г.Решение . Процесс конденсации описывается термохимическим уравнением H2 O (г.) = H2 O (ж.) + Q – конденсация обычно экзотермический процесс Теплота конденсации воды при 25o C 37 кДж/моль (справочник).

Следовательно, Q = 37 × 0,32 = 11,84 кДж.

В 19 веке русским химиком Гессом, изучавшим тепловые эффекты реакций, был экспериментально установлен закон сохранения энергии применительно к химическим реакциям – закон Гесса .

Тепловой эффект химической реакции не зависит от пути процесса и определяется только разностью конечного и начального состояний.

С точки зрения химии и математики данный закон означает, что мы вольны для расчета процесса выбрать любую «траекторию расчета», ведь результат от нее не зависит. По этой причине очень важный закон Гесса имеет невероятно важное следствие закона Гесса .

Тепловой эффект химической реакции равен сумме теплот образования продуктов реакции за вычетом суммы теплот образования реагентов (с учетом стехиометрических коэффициентов).

С точки зрения здравого смысла данное следствие соответствует процессу, в котором сначала все реагенты превратились в простые вещества, которые затем собрались по-новому, так что получились продукты реакции.

В форме уравнения следствие закона Гесса выглядит так Уравнение реакции: a 1 A 1 + a 2 A 2 + … + a n A n = b 1 B 1 + b 2 B 2 + … b

При этом a i иb j – стехиометрические коэффициенты,A i – реагенты,B j – продукты реакции.

Тогда следствие закона Гесса имеет вид Q = ∑ b j × Q обр 0 ,298

k Bk + Q

(A i )

Лекция 6. Термохимия. Тепловой эффект химической реакции Поскольку стандартные теплоты образования многих веществ

а) сведены в специальные таблицы или б) могут быть определены экспериментально, то становится возможным предсказать (рассчитать) тепловой эффект очень большого количества реакций с достаточно высокой точностью.

Пример 3 . (Следствие закона Гесса). Рассчитайте тепловой эффект паровой конверсии метана, происходящей в газовой фазе при стандартных условиях:

CH4 (г.) + H2 O (г.) = CO (г.) + 3 H2 (г.)

Определите, является ли данная реакция экзотермической или эндотермической?

Решение: Следствие закона Гесса

Q = 3 Q0

Г ) +Q 0

(CO ,г ) −Q 0

Г ) −Q 0

O , г ) - в общем виде.

обр ,298

обр ,298

обр ,298

обр ,298

Q обр0

298 (H 2 ,г ) = 0

Простое вещество в стандартном состоянии

Из справочника находим теплоты образования остальных компонентов смеси.

O ,г ) = 241,8

(СO ,г ) = 110,5

Г ) = 74,6

обр ,298

обр ,298

обр ,298

Подставляем значения в уравнение

Q = 0 + 110,5 – 74,6 – 241,8 = -205,9 кДж/моль, реакция сильно эндотермична.

Ответ: Q = -205,9 кДж/моль, эндотермическая

Пример 4. (Применение закона Гесса). Известны теплоты реакций

C (тв.) + ½ O (г.)= CO (г.) + 110,5 кДж

С (тв.) + O2 (г.) = CO2 (г.) + 393,5 кДж Найти тепловой эффект реакции 2CO (г.) + O2 (г.) = 2CO2 (г.).Решение Умножим первое и второе уравнение на 2

2C (тв.) + O2 (г.)= 2CO (г.) + 221 кДж 2С (тв.) + 2O2 (г.) = 2CO2 (г.) + 787 кДж

Вычтем из второго уравнения первое

O2 (г.) = 2CO2 (г.) + 787 кДж – 2CO (г.) – 221 кДж,

2CO (г.) + O2 (г.) = 2CO2 (г.) + 566 кДж Ответ: 566 кДж/моль.

Замечание: При изучении термохимии мы рассматриваем химическую реакцию извне (снаружи). Напротив, химическая термодинамика – наука о поведении химических систем – рассматривает систему изнутри и оперирует понятием «энтальпии»H как тепловой энергии системы. Энтальпия, таким

Лекция 6. Термохимия. Тепловой эффект химической реакции образом, имеет тот же смысл, что и количество теплоты, но имеет противоположный знак: если энергия выделяется из системы, окружающая среда её получает и греется, а система энергию теряет.

Литература :

1. учебник, В.В. Еремин, Н.Е. Кузьменко и др., Химия 9 класс, параграф 19,

2. Учебно-методическое пособие «Основы общей химии» Часть 1.

Составители – С.Г. Барам, И.Н. Миронова. – взять с собой! на следующее семинарское занятие

3. А.В. Мануйлов. Основы химии. http://hemi.nsu.ru/index.htm

§9.1 Тепловой эффект химической реакции. Основные законы термохимии.

§9.2** Термохимия (продолжение). Теплота образования вещества из элементов.

Стандартная энтальпия образования.

Внимание!

Мы переходим к решению расчетных задач, поэтому на семинары по химии отныне и впредь желателен калькулятор.