Какие поверхности относятся к поверхностям вращения. Образование поверхности вращения

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Возможно, самым простым способом создания трехмерной поверхности является вращение двумерного объекта, например прямой или плоской кривой вокруг оси в пространстве. Такие поверхности называются поверхностями вращения. Сначала для простоты предположим, что ось вращения совпадает с осью и положительно направлена. Предположим также, что объекты вращения - отрезок, прямая или плоская кривая - лежат на плоскости . Позднее мы рассмотрим метод, позволяющий избавиться от этих ограничений.

Самый простой объект, который можно вращать вокруг оси, - это точка. При условии, что точка не лежит на оси, вращение на угол породит окружность. Поворот на меньший угол даст дугу окружности.

Следующим по сложности является отрезок, параллельный, но не совпадающий с осью вращения. Вращение на угол породит в этом случае круговой цилиндр. Радиусом этого цилиндра является длина перпендикуляра, опущенного с отрезка на ось вращения. Длина цилиндра равна длине отрезка. Пример изображен на рис. 6-1.

Если отрезок и ось вращения компланарны и отрезок не параллелен оси вращения, то в результате вращения вокруг оси на угол мы получим усеченный круговой конус. Радиусы оснований усеченного конуса - длины перпендикуляров, опущенных с концов отрезка на ось вращения. Высота конуса - это длина спроецированного на ось вращения отрезка. Пример изображен на рис. 6-2.

И снова, если отрезок и ось вращения компланарны и отрезок перпендикулярен оси вращения, то в результате вращения на угол мы получим плоский диск. Если отрезок пересекает (или касается) ось вращения, то получится сплошной диск, в противном случае диск будет иметь круглое отверстие. Примеры изображены на рис. 6-3.

И наконец, если отрезок наклонен к оси вращения, т.е. некомпланарен, то вращение на угол породит однополостный гиперболоид (см. разд. 6-4 и 6-7).

Рис. 6-1 Цилиндрическая поверхность вращения. (а) Схема построения; (b) результат.

Рис. 6-2 Коническая поверхность вращения. (а) Схема построения; (b) результат.

Рис. 6-3 Диск в качестве поверхности вращения. (а) Схема построения; (b) результат.

Рис. 6-4 Поверхность вращения из замкнутой ломаной. (a) Схема построения; (b) результат.

Рис. 6-5 Бипараметрическая поверхность вращения.

Для создания поверхностей вращения могут быть также использованы замкнутые и незамкнутые ломаные. На рис. 6-4 представлен конус с цилиндрическим отверстием.

Параметрическое уравнение точки на поверхности вращения можно получить, если вспомнить, что параметрическое уравнение вращаемого объекта, например

есть функция одного параметра . Вращение вокруг оси приводит к тому, что координаты зависят также от угла поворота. Таким образом, точка на поверхности вращения определяется двумя параметрами и . Как показано на рис. 6-5, это бипараметрическая функция.

Для рассматриваемого частного случая, т. е. вращения вокруг оси объекта, расположенного в плоскости , уравнение поверхности записывается

Заметим, что здесь координата не меняется. В качестве иллюстрации приведем пример.

Пример 6-1 Простая поверхность вращения

Рассмотрим отрезок с концами и , лежащий в плоскости . Вращение отрезка вокруг оси породит коническую поверхность. Определим на поверхности координаты точки с параметрами , .

Параметрическое уравнение отрезка, соединяющего и , имеет вид

с декартовыми координатами

.

Используя уравнение (6-1), получим точку на поверхности вращения

.

Вращение плоских кривых также порождает поверхности вращения. Как показано на рис. 6-6а, сфера получается в результате вращения вокруг оси расположенной в плоскости полуокружности, центрированной относительно начала координат. Вспомнив параметрическое уравнение окружности (см. разд. 4-5)

получим параметрическое уравнение сферы

Рис. 6-6 Поверхности вращения. (а) Сфера; (b) эллипсоид.

Если вместо окружности подставить параметрическое уравнение центрированного полуэллипса, расположенного в плоскости , получится эллипсоид вращения. Напомнив параметрическое уравнение полуэллипса (см. разд. 4-6)

получим для любой точки эллипсоида следующее параметрическое уравнение:

При уравнение (6-3) превращается в уравнение (6-2) для сферы. Эллипсоид вращения показан на рис. 6-66.

Если ось вращения не проходит через центр окружности или эллипса, то в результате вращения получается тор с сечением в виде окружности или эллипса, соответственно. Параметрическое уравнение эллипса на плоскости с центром, не совпадающим с началом координат, выглядит так

где - это , - координаты центра эллипса, тогда параметрическое уравнение для любой точки тора имеет вид:

где , . Если , то уравнение (6-4) задает тор с сечением в виде окружности. Если , то получится тор с сечением в виде эллипса. На рис. 6-7 представлены оба типа торов.

Рис. 6-7 Торы. (а) С сечением в виде окружности; (b) с сечением в виде эллипса.

Параболоид вращения получается при вращении параметрической параболы (см. разд. 4-7)

Гиперболоид вращения получается при вращении параметрической гиперболы

вокруг оси . Параметрическая поверхность задается уравнением

Примеры показаны на рис. 6-8.

Для создания поверхности вращения можно использовать любую параметрическую кривую, например кубический сплайн, параболический сплайн, кривую Безье и В-сплайн. На рис. 6-9 изображена поверхность вращения, созданная из относительно простого параболического сплайна. На рис. 6-10 изображен бокал, созданный как поверхность вращения с помощью незамкнутого В-сплайна.

Рис. 6-8 Поверхности вращения. (а) Параболоид; (b) гиперболоид.

Рис. 6-9 Поверхность вращения из параболически интерполированной кривой. (а) Создание кривой; (b) поверхность.

Заметим, что бокал имеет как внутреннюю, так и внешнюю стороны. Вращение производится относительно оси .

Рис. 6-10 В-сплайн поверхность вращения. (а) Вершины ломаной; (b) В-сплайн; (с) поверхность.

Напомним, что в матричной форме параметрическая пространственная кривая (см. уравнения (5-27), (5-44), (5-67) и (5-94)) задается следующим образом:

,

где , и - соответственно матрица параметров, матрица функций смешивания и геометрическая матрица. Таким образом, в общей форме матричное уравнение поверхности вращения записывается в виде:

, (6-7)

где представляет вклад вращения вокруг оси на угол . Для частного случая вращения вокруг оси имеем:

. (6-8)

Эти методы иллюстрируются в следующем примере.

Пример 6-2 Поверхность вращения, созданная по параболической кривой

Рассмотрим параболическую кривую, заданную точками , , , . Будем вращать эту кривую вокруг оси на угол , чтобы получить поверхность вращения. Найдем на поверхности точку с параметрами , .

Из уравнений (6-7) и (6-8) получим параметрическое уравнение поверхности вращения

,

где , , и задаются уравнениями (5-44), (5-52) и (5-53) соответственно.

Конкретнее,

.

Рис. 6-11 Поверхность вращения вокруг произвольной оси.

Результаты изображены на рис. 6-9. Такая поверхность может быть результатом разработки кубка или даже газового канала двигателя или ракетного сопла.

Предыдущие результаты были получены путем вращения точки, отрезка, ломаной или кривой вокруг координатной оси, а именно вокруг оси . К более общему случаю поворота вокруг произвольной оси в пространстве поверхность вращения, полученную в более удобной локальной системе координат, можно свести с помощью переносов и поворотов, приводящих поверхность в нужное положение.

На рис. 6-11 показана параметрическая кривая , повернутая вокруг произвольной оси в пространстве, проходящей через точки и и направленной от к . После того как поверхность создана в удобной системе координат для приведения поверхности вращения в нужное положение, нужно совершить следующие действия:

1. Перенести точку в начало координат.

2. Выполнить повороты, необходимые для совмещения осей и (см. разд. 5-9).

3. Повернуть вокруг оси на угол для совмещения осей и .

Эти три шага необходимы только для того, чтобы найти обратное преобразование, размещающее поверхность вращения в нужном месте в трехмерном пространстве. Получив поверхность вращения вокруг оси , приведем ее в нужное положение в пространстве:

1. Сдвинуть по оси , чтобы переместить центр поверхности вращения в нужное положение на оси .

2. Применить к поверхности вращения преобразование, обратное к суммарному преобразованию поворотов.

3. Применить к поверхности вращения обратный перенос точки .

Точка на поверхности вращения тогда задается уравнением:

где , , задаются уравнениями (3-22)-(3-24). задается уравнением (3-8), и матрица задается в форме уравнения (6-7) с геометрической матрицей , представленной в однородных координатах. теперь является матрицей , заданной в виде

. (6-10)

Данный метод иллюстрируется на следующем примере.

Пример 6-3 Поверхность вращения вокруг произвольной оси

Найдем координаты точки с параметрами , на поверхности вращения, образованной вращением эллипса с главной осью, наклоненной относительно оси вращения. Ось вращения проходит через центр эллипса и лежит в плоскости эллипса. Угол наклона . Полуоси эллипса , . Ось проходит через точки и . Центр эллипса находится в точке .

Формальное дифференцирование уравнения (6-7) дает параметрические производные для поверхности вращения. А именно, производная в осевом направлении равна

а производная в радиальном направлении

, (6-12)

где штрих обозначает соответствующее дифференцирование.

Нормаль к поверхности задается векторным произведением параметрических производных, т.е.

\[{\Large{\text{Цилиндр}}}\]

Рассмотрим окружность \(C\) с центром \(O\) радиуса \(R\) на плоскости \(\alpha\) . Через каждую точку окружности \(C\) проведем прямую перпендикулярно плоскости \(\alpha\) . Поверхность, образованная этими прямыми, называется цилиндрической поверхностью .
Сами прямые называются образующими данной поверхности.

Проведем теперь через некоторую точку некоторой образующей плоскость \(\beta\parallel \alpha\) . Множество точек, по которым образующие пересекут плоскость \(\beta\) , образует окружность \(C"\) , равную окружности \(C\) .
Часть пространства, ограниченная двумя кругами \(K\) и \(K"\) с границами \(C\) и \(C"\) соответственно, а также частью цилиндрической поверхности, заключенной между плоскостями \(\alpha\) и \(\beta\) , называется цилиндром .

Круги \(K\) и \(K"\) называются основаниями цилиндра; отрезки образующих, заключенных между плоскостями, – образующими цилиндра; часть цилиндрической поверхности, образованная ими, - боковой поверхностью цилиндра. Отрезок, соединяющий центры оснований цилиндра равен образующей цилиндра и равен высоте цилиндра (\(l=h\) ).

Теорема

Площадь боковой поверхности цилиндра равна \

где \(R\) – радиус основания цилиндра, \(h\) – высота (образующая).

Теорема

Площадь полной поверхности цилиндра равна сумме площади боковой поверхности и площадей обоих оснований \

Теорема

Объем цилиндра вычисляется по формуле \

\[{\Large{\text{Конус}}}\]

Рассмотрим плоскость \(\alpha\) и на ней окружность \(C\) с центром \(O\) и радиусом \(R\) . Через точку \(O\) проведем прямую, перпендикулярную плоскости \(\alpha\) . Отметим на этой прямой некоторую точку \(P\) . Поверхность, образованная всеми прямыми, проходящими через точку \(P\) и каждую точку окружности \(C\) , называется конической поверхностью , а эти прямые – образующими конической поверхности. Часть пространства, ограниченная кругом с границей \(C\) и отрезками образующих, заключенными между точкой \(P\) и точкой на окружности, называется конусом . Отрезки \(PA\) , где \(A\in \text{окр. } C\) , называются образующими конуса ; точка \(P\) – вершина конуса; круг с границей \(C\) – основание конуса; отрезок \(PO\) – высота конуса.


Замечание

Заметим, что у конуса высота и образующая не равны друг другу, как было в случае с цилиндром.

Теорема

Площадь боковой поверхности конуса равна \

где \(R\) – радиус основания конуса, \(l\) – образующая.

Теорема

Площадь полной поверхности конуса равна сумме площади боковой поверхности и площадей основания \

Теорема

Объем конуса вычисляется по формуле \

Замечание

Заметим, что цилиндр в каком-то смысле является призмой, только в основании находится не многоугольник (как у призмы), а круг.
Формула объема цилиндра такая же, как и формула объема призмы: произведение площади основания на высоту.

Аналогично конус в каком-то смысле является пирамидой. Поэтому формула объема конуса такая же, как и у пирамиды: треть площади основания на высоту.

\[{\Large{\text{Сфера и шар}}}\]

Рассмотрим множество точек пространства, равноудаленных от некоторой точки \(O\) на расстояние \(R\) . Это множество называется сферой с центром в точке \(O\) радиуса \(R\) .
Отрезок, соединяющий две точки сферы и проходящий через ее центр называется диаметром сферы.

Сфера вместе со своей внутренностью называется шаром .


Теорема

Площадь сферы вычисляется по формуле \

Теорема

Объем шара вычисляется по формуле \

Определение

Шаровой сегмент – это часть шара, отсекаемая от него некоторой плоскостью.
Пусть плоскость пересекла шар по кругу \(K\) с центром в точке \(Q\) . Соединим точки \(O\) (центр шара) и \(Q\) и продлим этот отрезок до пересечения со сферой – получим радиус \(OP\) . Тогда отрезок \(QP\) называется высотой сегмента.


Теорема

Пусть \(R\) – радиус шара, \(h\) – высота сегмента, то объем шарового сегмента равен \

Определение

Шаровой слой – это часть шара, заключенная между двумя параллельными плоскостями, пересекающими этот шар. Круги, по которым плоскости пересекают шар, называются основаниями шарового слоя, отрезок, соединяющий центры оснований – высотой шарового слоя.
Две оставшиеся части шара являются в этом случае шаровыми сегментами.

Объем шарового слоя равен разности объема шара и объемов шаровых сегментов с высотами \(AP\) и \(BT\) .

Поверхности вращения – поверхности, образованные вращением произвольной образующей вокруг неподвижной оси (рис. 51, а). Направляющей поверхности вращения является окружность постоянного (цилиндр) или переменного радиуса (конус, сфера). Нормальное – перпендикулярное оси вращения сечение любой поверхности вращения, представляет собой окружность с центром на ее оси.

Рис. 51. Поверхность вращения: а – основные линии на поверхности вращения; б – представление поверхности вращения в виде сети

Направляющие называют также параллелями поверхности вращения. Плоскости параллелей перпендикулярны к оси поверхности. Наибольшую из параллелей называют экватором поверхности, наименьшую – горлом. Плоскости, проходящие через ось поверхности вращения, называют меридиональными, а линии, по которым они пересекают поверхность – меридианами. Поверхность вращения можно представить параллелями или меридианами поверхности, а также сетью, состоящей из параллелей и меридианов (рис. 51, б).

Поверхность вращения называют закрытой, если меридиональное сечение поверхности является замкнутой кривой линией, пересекающей ось поверхности в двух точках.

При вращении вокруг оси плоской или пространственной алгебраической кривой n-го порядка образуется алгебраическая поверхность вращения, в общем случае, 2n–го порядка. Если кривая второго порядка вращается вокруг своей оси, то она образует поверхность второго порядка.

В зависимости от вида образующей различают:

Торовые поверхности – поверхности, образованные вращением окружности или дуги окружности:




Рис. 52. Торовые поверхности: а – сфера; b – открытый тор (кольцо); c – закрытый тор; d – глобоид

  • Сфера образуется вращением окружности вокруг оси, проходящей через ее центр (рис. 52, а).
  • Тор образуется вращением окружности вокруг оси, лежащей в плоскости этой окружности и не проходящей через ее центр (тор является поверхностью четвертого порядка). Различают открытый тор , образованный вращением окружности вокруг оси, которая не пересекает образующую (рис. 52, б) и закрытый тор , образованный вращением окружности вокруг оси, которая пересекает образующую окружность или касается ее (рис. 52, в).
  • Глобоид образуется вращением окружности достаточно большого радиуса вокруг оси, которая не пересекает образующую (рис. 52, г).

Эллипсоид вращения образуется вращением эллипса вокруг его оси. Если за ось вращения принята большая ось эллипса, эллипсоид вращения называют вытянутым (рис. 53. а), если малая – сжатым или сфероидом (рис. 53, б). Земной шар, например, по форме близок к сфероиду



Рис. 53. Поверхности вращения: а – вытянутый эллипсоид; б – сфероид

Параболоид вращения образуется вращением параболы вокруг ее оси (рис. 54). Параболоиды вращения используются в качестве отражающей поверхности в прожекторах и фарах автомобилей для получения параллельного светового пучка.


Рис. 54. Параболоид вращения

Гиперболоид вращения образуется вращением гиперболы. Различают однополостный гиперболоид (рис. 55, а), образованный вращением гиперболы вокруг ее мнимой оси, и двуполостный гиперболоид (рис. 55, б), образованный вращением гиперболы вокруг ее действительной оси.