Почему при испарении происходит охлаждение. Испарение и конденсация воды

В природе, технике и быту мы часто наблюдаем превращение жидких и твердых тел в газообразное состояние. В ясный летний день быстро высыхают лужи, оставшиеся после дождя, мокрое белье. Уменьшаясь со временем, исчезают куски сухого льда, «тают» кусочки нафталина, которым мы пересыпаем шерстяные вещи и т.п. Во всех этих случаях наблюдается парообразование - переход веществ в газообразное состояние - пар.

Существует два способа перехода жидкости в газообразное состояние: испарение и кипение. Испарение происходит с открытой свободной поверхности, отделяющей жидкость от газа, например с поверхности открытого сосуда, с поверхности водоема и т.д. Испарение происходит при любой температуре, но для всякой жидкости с повышением температуры скорость его увеличивается. Объем, занимаемый данной массой вещества, при испарении возрастает скачком.

Следует различать два основных случая. Первый, когда испарение происходит в замкнутом сосуде и температура во всех точках сосуда одинакова. Например, испаряется вода внутри парового котла или в чайнике, закрытом крышкой, если температура воды и пара ниже температуры кипения. В этом случае объем образующегося пара ограничен пространством сосуда. Давление пара достигает некоторого предельного значения, при котором он находится в тепловой равновесии с жидкостью; такой пар называется насыщенным, а его давление упругостью пара.

Второй случай, когда пространство над жидкостью незамкнутое; так испаряется вода с поверхности пруда. Здесь равновесие не достигается практически никогда и пар является ненасыщенным, а скорость испарения зависит от многих факторов.

Мерой скорости испарения является количество вещества, улетающего в единицу времени с единицы свободной поверхности жидкости. Джон Дальтон, английский физик и химик, в начале XIX века нашел, что скорость испарения пропорциональна разности между давлением насыщенного пара при температуре испаряющейся жидкости и действительным давлением того реального пара, который имеется над жидкостью. Если и же жидкость и пар находятся в равновесии, то скорость испарения равна нулю. Точное, оно происходит, но той же скоростью идет и обратный процесс - конденсация. Скорость испарения зависит также от того, происходит ли оно в спокойной атмосфере или движущейся; скорость его увеличивается, если образующийся пар сдувается потоком воздуха, или откачивается насосом.

Если испарение происходит из жидкого раствора, то разные вещества испаряются с разной скоростью. Скорость испарения данного вещества уменьшается с увеличением давления пространственных газов, например воздуха. Поэтому испарение в пустоту происходит с наибольшей скоростью. Напротив, добавляя в сосуд посторонний инертный газ, можно очень сильно замедлить испарение. .

При испарении вылетающие из жидкости молекулы должны преодолеть притяжение соседних молекул и совершить работу против удерживающих их в поверхностном слое сил поверхностного натяжения. Поэтому, чтобы испарение происходило, испаряющемуся веществу надо сообщить тепло, черпая его из запаса внутренней энергии самой жидкости, или, отбирая у окружающих тел. Количество тепла, которое нужно сообщить жидкости, находящейся приданной температуре и фиксированном давлении, чтобы перевести ее в пар при этих температуре и давлении, называется теплотой испарения. Упругость пара растет с ростом температуры, тем сильнее, чем больше теплота испарения.

Если испаряющейся жидкости не подводит тепла извне или подводить его недостаточно, то жидкость охлаждается. Заставляя жидкость, помещенную в сосуд с нетеплопроводными стенками, усиленно испаряться, можно добиться значительного его охлаждения. Согласно кинетической теории, при испарении с поверхности жидкости вырываются более быстрые молекулы, средняя энергия, остающихся в жидкости молекул убывает.

Испарение сопровождается уменьшением количества вещества и понижением его температуры. При испарении жидкости отдельные наиболее быстро движущиеся молекулы могут вылететь с поверхностного слоя наружи. Эти молекулы обладают кинетической энергией, большей или равной работе, которую необходимо совершить против сил сцепления, удерживающих их внутри жидкости. При этом температура жидкости, определяемая средней скоростью беспорядочного движения молекул, понижается. Понижение температуры жидкости свидетельствует о том, что внутренняя энергия испаряющейся жидкости уменьшается. Часть этой энергии расходуется на преодоление сил сцепления и на совершения расширяющимся паром работы против внешнего давления. С другой стороны, происходит увеличение внутренней энергии той части вещества, которая превратилась в пар вследствие увеличения расстояния между молекулами пара по сравнению с расстоянием между молекулами жидкости. Поэтому внутренняя энергия единицы массы пара больше, чем внутренняя энергия единицы массы жидкости при той же температуре.

Иногда испарением называют также сублимацию, или возгонку, то есть переход твердого вещества в газообразное состояние, минуя жидкую стадию. Почти все их закономерности действительно похожи. Теплота сублимации больше теплоты испарения приблизительно на теплоту плавления.

При температурах ниже температуры плавления давление насыщенных паров большинства твердых тел очень мало и их испарение практически отсутствует. Бывают, однако, исключения. Так, вода при 0°С имеет давление насыщенных паров 4,58 мм рт.ст., а лёд при - 1°С - 4,22 мм рт.ст. и даже при - 10°С - 1,98 мм рт.ст.

Этим сравнительно большими упругостями водяного пара объясняется легко наблюдаемое испарение твердого льда, в частности, известный всем факт высыхания мокрого белья на морозе. Испарение твердого тела можно наблюдать также на испарении искусственного льда, нафталина, снега.

Явление испарения лежит в основе перегонки - одного из распространенных методов химической технологии. Перегонка - это процесс разделения многокомпонентных жидких смесей путем частичного испарения и последующей конденсации паров. В результате этого процесса жидкие смеси разделяются на отдельные фракции, различающиеся по составу и температурам кипения.

Физическое явление - кипение

Второй способ парообразования - это кипение, характеризующееся, в отличие от испарения, тем, что образование пара происходит не только на поверхности, но и по всей массе жидкости. Кипение становится возможным, если давление насыщенных паров жидкости делается равным внешнему давлению. Поэтому данная жидкость, находясь под данным внешним давлением, кипит при вполне определенной температуре. Обычно температуру кипения приводят для атмосферного давления. Например, вода при атмосферном давлении кипит при 373 К или 100°С.

Различие температур кипения различных веществ находит применение в технике для так называемой разгонки смесей, компоненты, которых сильно отличаются по температуре кипения, например, для перегонки нефтепродуктов.

Зависимость температуры кипения от давления объясняется тем, что внешнее давление препятствует росту пузырьков пара внутри жидкости, Поэтому при повышенном давлении жидкость кипит при более высокой температуре. При изменении давления точка кипения меняется в более широких пределах, чем точка плавления.

Кипение - это особый вид парообразования, отличный от испарения. Внешние признаки кипения: на стенках сосуда появляются большое количество мелких пузырьков; объем пузырьков увеличивается и начинает сказываться подъемная сила; внутри жидкости происходят более или менее бурные и неправильные движения пузырьков. На поверхности пузырьки лопаются Процесс всплывания, разрушения пузырьков, заполненных воздухом с паром, на поверхности жидкости характеризует кипение. Жидкости имеют свои температуры кипения.

Пузырьки, образующиеся при кипении жидкости, легче всего возникают на пузырьках воздуха или других газов, обычно присутствующих в жидкости. Такие пузырьки - центры кипения - часто прилипают к стенкам сосуда, потому кипение раньше начинается у стенок.

В пузырьках воздуха содержатся водяные пары. Благодаря многочисленным пузырькам резко возрастает поверхность испарения жидкости. Образование пара идет по всему объему сосуда. Отсюда и характерные признаки кипения: бурление, резкое увеличение количества пара, прекращение роста температуры до полного выкипания.

Но если жидкость свободно от газов, то образование в ней пузырьков пара затруднено. Такую жидкость можно перегреть, то есть нагреть выше температуры кипения без того, чтобы она закипела. Если в такую перегретую жидкость ввести ничтожное количество газа или твердых частичек, к поверхности которых прилип воздух, то она мгновенно взрывообразно закипит. Температура жидкости при этом падает до температуры кипения. Подобные явления могут служить причиной взрывов паровых котлов, поэтому их нужно предупреждать. Еще в 1924 году Ф. Кендрику с сотрудниками удалось при нормальном атмосферном давлении нагреть жидкую воду до 270ºC. При этой температуре равновесное давление водяного пара составляет 54 атм. Из сказанного следует, процессы кипения можно управлять, увеличение или уменьшение давления, а также уменьшая число «затравок». Современные исследования показали, что в идеальном случае воду нагреть примерно до 300ºC, после чего она мгновенно мутнеет и взрывается с образованием быстро расширяющейся паро-водяной смеси.

Таким образом, кипение, как и испарение, - это парообразование. Испарение происходит с поверхности жидкости при любой температуре и любом внешнем давлении, а кипение - это парообразование во всем объеме жидкости при определенной для каждого вещества температуре, зависящей от внешнего давления.

Чтобы температура испаряющейся жидкости не изменялась, к жидкости необходимо подводить определенные количества теплоты. Физическая величина, показывающая количество теплоты необходимо, чтобы обратить жидкость с массой 1 кг в пар без изменения температуры называют удельной теплотой парообразования. Обозначается эта величина буквой L, измеряется Дж/кг. = Дж/кг

Конденсация пара - противоположный процесс парообразования Явление парообразования и конденсации объясняют круговорот воды в природе, образование тумана, выпадения росы.

Количество теплоты, которое выделяет пар, конденсируясь, определяется по той же формуле. = Дж

Опытным путем установлено, что, например, удельная теплота парообразования воды при 100°С равна 2,3 106Дж/кг, то есть для превращения воды с массой 1 кг в пар при температуре кипения 100°С требуется 2,3 106Дж энергии.

Влажность воздуха

В атмосфере нашей планеты вследствие всевозможных испарений содержится огромное количество водных паров, особенно в ближайших к земле слоях. Наличие водяных паров в воздухе является необходимым условием существования жизни на земном шаре. Впрочем, для животного и растительного мира неблагоприятен как сухой так слишком влажный воздух. Умеренная влажность воздуха создает необходимое условие для нормальной жизни и деятельности человека. Избыточная влажность вредно ряда производственных процессов, при хранении продуктов и материалов. Как же оценить степень влажности воздуха, т.е. количество содержащихся в нем водяных паров? Такая оценка особенно важна для составления прогноза погоды, поскольку содержание водяных паров в атмосфере является одним из важнейших факторов, определяющих погоду. Без знания влажности воздуха, невозможно сделать прогноз погодных условий, столь необходимый для сельского хозяйства, транспорта, ряда других отраслей народного хозяйства. Чтобы узнать, сколько содержится в воздухе пара, в принципе пропустить определенный объем воздуха сквозь вещество, поглощающее водяной пар, и так найти массу пара, находившегося в 1 м3 воздуха.

Величину, измеряемую количеством водяного пара, содержащегося в 1 см3 воздуха, называют абсолютной влажностью воздуха. Иными словами, абсолютную влажность воздуха измеряют плотностью водяного пара, находящегося в воздухе.

Практически измерить количество пара, содержащегося в 1 м3 воздуха очень трудно. Но оказалось, что численное значение абсолютной влажности мало отличается от парциального давления водяного пара в этих же условиях, измеренного в миллиметрах ртутного столба. Парциальное давление газа измеряется гораздо проще, поэтому в метеорологии абсолютной влажности воздуха принято называть парциальное давление водяного пара, содержащегося в нем при данной температуре, измеренное в миллиметрах ртутного столба.

Но, зная абсолютную влажность воздуха, еще нельзя определить, насколько он сух или влажен, поскольку последний зависит и от температуры. Если температура низкая, то данное количество водяного пара в воздухе может оказаться очень близким к насыщению, т.е. воздух будет сырым. При более высокой температуре, то же количество водяного пара далеко от насыщения, и воздух сух.

Для суждения о степени влажности воздуха важно знать, близок или далек водяной пар, находящийся в нем от состояния насыщения. С этой целью вводят понятие относительной влажности.

Относительной влажностью воздуха называют величину, измеряемую отношением абсолютной влажности к количеству пара, необходимого для насыщения в 1 м 3 воздуха при той температуре. Обычно ее выражают в процентах. Иначе говоря, относительная влажность воздуха показывает, какой процент составляет абсолютная влажность от плотности водяного пара насыщающего воздух при данной температуре:

В метеорологии относительной влажностью называют величину, измеряемую отношением парциального давления водяного пара. Содержащегося в воздухе, давление водяного пара, насыщающего воздух при той же температуре.

Относительная влажность воздуха зависит не только от абсолютной влажности, но и от температуры. Если количество водяных паров в воздухе не меняется, то с понижением температуры относительная влажность возрастает, так как чем ниже температура, тем ближе водяной пар к насыщению. Для вычисления относительной влажности пользуются значениями, приводимыми в соответствующих таблицах

Вода - растворитель

Вода является хорошим растворителем. Растворами называют однородные системы, состоящие из молекул растворителя и частиц растворенного вещества, между которыми происходят физические и химические взаимодействия. Например: механическое перемешивание - это физическое явление, нагревание при растворении серной кислоты в воде - химическое явление.

Суспензии - это взвеси, в которых мелкие частицы твердого вещества равномерно распределены между молекулами воды. Например: смесь глины с водой.

Эмульсии - это взвеси, в которых мелкие капельки какой-либо жидкости равномерно распределены между молекулами другой жидкости. Например: взбалтывание керосина, бензина и растительного масла с водой.

Раствор, в котором данное вещество при данной температуре больше не растворяется, называется насыщенным, а раствор, в котором вещество еще может растворяться, - ненасыщенным.

Растворимость определяется массой вещества, массой вещества, способной растворяться в 1000мл растворителя при данной температуре.

Массовая доля растворенного вещества - это отношение массы растворенного вещества к массе раствора.

При вылете из жидкости молекулы преодолевают силы притяжения со стороны оставшихся молекул, т. е. совершают работу против этих сил. Не все молекулы жидкости могут совершить необходимую работу, а только те из них, которые обладают достаточной для этого кинетической энергией, достаточной скоростью.

Но если из жидкости выходят при испарении наиболее быстрые молекулы, то средняя скорость остальных молекул жидкости становится меньше, - следовательно, и средняя кинетическая энергия остающихся в жидкости молекул уменьшается. Это означает, что внутренняя энергия испаряющейся жидкости уменьшается. Поэтому, если нет притока энергии к жидкости извне, испаряющаяся жидкость охлаждается.

Охлаждение жидкости при испарении можно наблюдать на опыте. Для этого нужно обмотать шарик термометра ватой (или кусочком материи) и полить ее эфиром. Быстро испаряющийся эфир отнимает часть внутренней энергии от шарика термометра, вследствие чего температура последнего понижается. Если эфиром смочить руку, то мы будем ощущать охлаждение руки.

Выходя из воды даже в жаркий день, мы чувствуем холод. Вода, испаряясь с поверхности нашего тела, отнимает от него некоторое количество теплоты.

Однако при испарении воды, налитой в стакан, мы не замечаем понижения ее температуры. Чем это объяснить? Дело в том, что испарение в данном случае происходит медленно и температура воды поддерживается постоянной за счет количества теплоты, поступающего из окружающего воздуха. Значит, чтобы испарение жидкости происходило без изменения ее температуры, жидкости необходимо сообщать энергию. Так, чтобы испарить воду массой 1 кг при температуре 35°С, требуется 2,4 10 6 Дж, а для испарения эфира массой 1 кг, взятого при той же температуре (35 °С),- 0,4 10 6 Дж энергии.

Испарение имеет большое значение в жизни животных. Затруднение испарения нарушает теплоотдачу и может вызвать перегревание тела.

Мы говорили, что процесс перехода молекул из пара в жидкость называют конденсацией. Конденсация пара сопровождается выделением энергии. Летним вечером, когда воздух становится холоднее, выпадает роса. Это водяной пар, находившийся в воздухе, при охлаждении воздуха оседает на траве и листьях в виде маленьких капелек воды.

Конденсацией пара объясняется образование облаков. Пары воды, поднимающиеся над землей, образуют в верхних, более холодных слоях воздуха облака, состоящие из мельчайших капелек воды.

Вопросы.

  1. Какую работу совершают молекулы, выходящие из жидкости при испарении?
  2. Как объяснить понижение температуры жидкости при ее испарении?
  3. Как можно на опыте показать охлаждение жидкости при испарении?
  4. Как можно объяснить, что при одних и тех же условиях одни жидкости испаряются быстрее , другие - медленнее?
  5. При каких условиях происходит конденсация пара?
  6. Какие явления природы объясняются конденсацией пара?

Упражнения.

  1. В какую погоду скорее просыхают лужи от дождя: в тихую или ветреную? в теплую или холодную? Как это можно объяснить?
  2. Почему горячий чай остывает скорее, если на него дуют?
  3. Выступающий в жару на теле пот охлаждает тело. Почему?
  4. Почему в сухом воздухе переносить жару легче, чем в сыром?
  5. Чтобы получить прохладную воду в летнюю жару, ее наливают в сосуды, изготовленные из слабообожженной глины, сквозь которую вода медленно просачивается. Вода в таких сосудах холоднее окружающего воздуха. Почему?
  6. Небольшое количество воды находится в стакане и такое же количество воды находится в блюдце. Где быстрее вода испарится? Почему?
  7. На стекло или доску кисточкой наносят мазки различных жидкостей: эфира, спирта, воды и масла. Наблюдая за мазками, замечают, что жидкости испаряются с разной скоростью. Проделайте такой опыт и объясните его.
  8. Для чего летом после дождей или полива приствольные круги плодовых деревьев покрывают слоем перегноя, навоза или торфа?

В природе вещества могут быть в одном из трех агрегатных состояний: твердом, жидком и газообразном. Переход из первого во второе и наоборот можно наблюдать ежедневно, особенно зимой. Однако превращение жидкости в пар, которое известно как процесс испарения, часто не видно глазу. При кажущейся незначительности оно играет важную роль в жизни человека. Итак, давайте узнаем об этом подробнее.

Испарение - это что такое

Каждый раз, решив вскипятить чайник для чая или кофе, можно наблюдать, как, достигнув 100 °С, вода превращается в пар. Именно это и является практическим примером процесса парообразования (перехода определенного вещества в газообразное состояние).

Парообразование бывает двух видов: кипение и испарение. На первый взгляд они идентичны, но это распространенное заблуждение.

Испарение - это парообразование с поверхности вещества, а кипение - со всего его объема.

Испарение и кипение: в чем разница

Хотя и процесс испарения, и кипение, оба способствуют переходу жидкости в газообразное состояние, стоит помнить о двух важных отличиях между ними.

  • Кипение - это активный процесс, который происходит при определенной температуре. Для каждого вещества она уникальна и может меняться только при понижении атмосферного давления. При нормальных условиях для кипения воды нужно 100 °С, для рафинированного подсолнечного масла - 227 °С, для нерафинированного - 107 °С. Спирту, чтобы закипеть, наоборот, нужна более низкая температура - 78 °С. Температура же испарения может быть любой и оно, в отличие от кипения, происходит постоянно.
  • Вторым существенным отличием между процессами является то, что при кипении парообразование происходит по всей толще жидкости. Тогда как испарение воды или других веществ происходит только с их поверхности. Кстати, процесс кипения всегда одновременно сопровождается и испарением.

Процесс сублимации

Считается, что испарение - это переход из жидкого в газообразное агрегатное состояние. Однако в редких случаях, минуя жидкое, возможно испарение прямо из твердого состояния в газообразное. Такой процесс называется сублимацией.

Это слово знакомо всем, кто хоть раз заказывал кружку или футболку с любимой фотографией в фотосалоне. Для перманентного нанесения изображения на ткань или керамику как раз и используется этот вид испарения, в честь него печать такого рода называется сублимационной.

Также такое испарение часто используется для промышленной сушки фруктов и овощей, изготовления кофе.

Хотя сублимация встречается намного реже, нежели испарение жидкости, иногда ее можно наблюдать в быту. Так, вывешенное сушиться зимой постиранное влажное белье - мгновенно замерзает и становится твердым. Однако постепенно эта жесткость уходит, и вещи становятся сухими. В данном случае вода из состояния льда, минуя жидкую фазу, переходит сразу в пар.

Как происходит испарение

Как и большинство физических и химических процессов, главную роль в процессе испарения играют молекулы.

В жидкостях они расположены очень близко друг к другу, но при этом они не имеют фиксированного места расположения. Благодаря этому они могут «путешествовать» по всей площади жидкости, причем с разными скоростями. Это достигается благодаря тому, что во время движения они сталкиваются между собой и от этих столкновений их скорость меняется. Став достаточно быстрыми, самые активные молекулы получают возможность подняться на поверхность вещества и, преодолев силу притяжения других молекул, покинуть жидкость. Так происходит испарение воды или другого вещества и образуется пар. Не правда ли, немного напоминает полет ракеты в космос?

Хотя из жидкости в пар переходят самые активные молекулы, однако оставшиеся их «собратья» продолжают пребывать в постоянном движении. Постепенно и они приобретают необходимую скорость, чтобы преодолеть притяжение и перейти в другое агрегатное состояние.

Постепенно и постоянно покидая жидкость, молекулы задействуют для этого ее внутреннюю энергию и она уменьшается. А это напрямую влияет на температуру вещества - она понижается. Именно поэтому количество остывающего чая в чашке немного уменьшается.

Условия испарения

Наблюдая за лужами после дождя, можно заметить, что некоторые из них высыхают быстрее, а некоторые дольше. Поскольку их высыхание является процессом испарения, то можно на данном примере разобраться с условиями, необходимыми для этого.

  • Скорость испарения зависит от типа испаряемого вещества, ведь каждое из них имеет уникальные особенности, влияющие на время, за которое его молекулы полностью перейдут в газообразное состояние. Если оставить открытыми 2 идентичных флакона, наполненных одинаковым количеством жидкости (в одном спирт С2Н5ОН, в другом - вода Н2О), то первая емкость опустеет быстрее. Поскольку, как уже было сказано выше, температура испарения у спирта ниже, а значит, он быстрее испарится.
  • Второе, от чего зависит испарение, - температура окружающей среды и температура кипения испаряемого вещества. Чем выше первая и ниже вторая, тем быстрее жидкость сможет ее достигнуть и перейти в газообразное состояние. Именно поэтому при проведении некоторых химических реакций с участием испарения вещества специально нагреваются.
  • Еще одним условием, от чего зависит испарение, является площадь поверхности вещества, с которого оно происходит. Чем она больше, тем быстрее происходит процесс. Рассматривая различные примеры испарения, можно снова вспомнить о чае. Его часто переливают в блюдце, чтобы охладить. Там напиток быстрее остывал, потому что увеличивалась площадь поверхности жидкости (диаметр блюдца больше диаметра чашки).
  • И снова о чае. Известен еще одни способ быстрее его остудить - подуть на него. Каким образом можно заметить, что наличие ветра (движения воздуха) - это то, от чего также зависит испарение. Чем выше скорость ветра, тем быстрее молекулы жидкости перейдут в пар.
  • Также влияет на интенсивность испарения атмосферное давление: чем оно ниже, тем быстрее молекулы переходят из одного состояния в другое.

Конденсация и десублимация

Превратившись в пар, молекулы не перестают двигаться. В новом агрегатном состоянии они начинают сталкиваться с молекулами воздуха. Из-за этого иногда они могут возвращаться в жидкое (конденсация) или твердое (десублимация) состояние.

Когда процессы испарения и конденсации (десублимации) равносильны между собой, это называют динамическим равновесием. Если газообразное вещество находится в динамическом равновесии со своей жидкостью аналогичного состава, его называют насыщенным паром.

Испарение и человек

Рассматривая различные примеры испарения, нельзя не вспомнить влияние этого процесса на организм человека.

Как известно, при температуре тела 42,2 °С белок в крови человека сворачивается, что ведет к смерти. Нагреваться человеческое тело может не только из-за инфекции, но и при выполнении физического труда, занятий спортом или во время пребывания в жарком помещении.

Организму удается сохранить приемлемую для нормальной жизнедеятельности температуру, благодаря системе самоохлаждения - потоотделению. Если температура тела повышается, через поры кожи выделяется пот, а потом происходит его испарение. Этот процесс помогает «сжечь» лишнюю энергию и способствует охлаждению организма и нормализации его температуры.

Кстати, именно поэтому не стоит безоговорочно верить рекламам, которые преподносят пот как главное бедствие современного общества и пытаются продать наивным покупателям всевозможные вещества для избавления от него. Заставить организм меньше потеть, не нарушая его нормальной работы, нельзя, а хороший дезодорант способен лишь маскировать неприятный запах пота. Поэтому, используя антиперспиранты, различные присыпки и пудры, можно нанести организму непоправимый вред. Ведь эти вещества забивают поры или сужают выводные протоки потовых желез, а значит, лишают тело возможности контролировать свою температуру. В случаях, если использование антиперспирантов все же необходимо, предварительно стоит проконсультироваться с врачом.

Роль испарения в жизни растений

Как известно, не только человек на 70% состоит из воды, но и растения, а некоторые, вроде редиса, и на все 90%. Поэтому испарение также важно и для них.

Вода является одним из главных источников попадания полезных (и вредных тоже) веществ в организм растения. Однако, чтобы эти вещества могли усвоиться, необходим солнечный свет. Вот только в жаркие дни солнце способно не просто нагреть растение, но и перегреть, тем самым погубив его.

Чтобы этого не произошло, представители флоры способны самоохлаждаться (похоже на человеческий процесс потоотделения). Иными словами при перегреве растения испаряют воду и таким образом охлаждаются. Поэтому поливу садов и огородов уделяется летом так много внимания.

Как используют испарение в промышленности и в быту

Для химической и пищевой промышленности испарение - это незаменимый процесс. Как уже было сказано выше, оно не только помогает производить дегидратацию многих продуктов (испарять влагу из них), что увеличивает срок их хранения; но также помогает изготавливать идеальные диетические продукты (меньше веса и калорий, при большем содержании полезных веществ).

Также испарение (в особенности сублимация) используется для очистки различных веществ.

Еще одной сферой применения является кондиционирование воздуха.

Не стоит забывать и о медицине. Ведь процесс ингаляции (вдыхание пара, насыщенного лечебными препаратами) основан тоже на процессе испарения.

Опасные испарения

Однако, как и у всякого процесса, у этого есть и негативные стороны. Ведь превращаться в пар и вдыхаться людьми и животными могут не только полезные вещества, но и смертельно опасные. А самое печальное в том, что они - невидимы, а значит, человек не всегда знает, что подвергся воздействию токсина. Именно поэтому стоит избегать пребывания без защитных масок и костюмов, на заводах и предприятиях, работающих с опасными веществами.

К сожалению, вредные испарения могут подстерегать и дома. Ведь если мебель, обои, линолеум или другие предметы изготовлены из дешевых материалов с нарушениями технологии, они способны выделять токсины в воздух, которые и будут постепенно «травить» своих хозяев. Поэтому при покупке любой вещи, стоит просматривать сертификат качества материалов, из которых она изготовлена.



Добавить свою цену в базу

Комментарий

Испарение жидкости происходит при любой температуре и тем быстрее, чем выше температура, больше площадь свободной поверхности испаряющейся жидкости и быстрее удаляются образовавшиеся над жидкостью пары.

При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называется кипением.

Это процесс интенсивного парообразования не только со свободной поверхности, но и в объеме жидкости. В объеме образуются пузыри, заполненные насыщенным паром. Они поднимаются вверх под действием выталкивающей силы и разрываются на поверхности. Центрами их образования являются мельчайшие пузырьки посторонних газов или частиц различных примесей.

Если пузырек имеет размеры порядка нескольких миллиметров и более, то вторым слагаемым можно пренебречь и, следовательно, для больших пузырьков при неизменном внешнем давлении жидкость закипает, когда давление насыщенного пара в пузырьках становится равным внешнему давлению.

В результате хаотического движения над поверхностью жидкости молекула пара, попадая в сферу действия молекулярных сил, вновь возвращается в жидкость. Этот процесс называется конденсацией.

Испарение и кипение

Испарение и кипение – это два способа перехода жидкости в газ (пар). Сам процесс такого перехода называется парообразованием. То есть испарение и кипение – это способы парообразования. Между этими двумя способами есть существенные отличия.

Испарение происходит только с поверхности жидкости. Оно является результатом того, что молекулы любой жидкости постоянно перемещаются. Причем скорость у молекул разная. Молекулы с достаточно большой скоростью, оказавшись на поверхности, могут преодолеть силу притяжения других молекул и оказаться в воздухе. Молекулы воды, находящиеся по отдельности в воздухе, как раз и образуют пар. Увидеть глазами пар невозможно. То, что мы видим, как водяной туман, это уже результат конденсации (обратный парообразованию процесс), когда при охлаждении пар собирается в виде мельчайших капелек.

В результате испарения сама жидкость охлаждается, так как ее покидают наиболее быстрые молекулы. Как известно, температура как раз определяется скоростью движения молекул вещества, то есть их кинетической энергией.

Скорость испарения зависит от многих причин. Во-первых, она зависит от температуры жидкости. Чем температура выше, тем испарение быстрее. Это и понятно, так как молекулы двигаются быстрее, а значит, им легче вырваться с поверхности. Скорость испарения зависит от вещества. У одних веществ молекулы притягиваются сильнее, и следовательно, труднее вылетают, а у других – слабее, и следовательно, легче покидают жидкость. Испарение также зависит от площади поверхности, насыщенности воздуха паром, ветра.

Самое главное, что отличает испарение от кипения, это то, что испарение протекает при любой температуре, и оно протекает только с поверхности жидкости.

В отличие от испарения, кипение протекает только при определенной температуре. Для каждого вещества, находящегося в жидком состоянии, характерна своя температура кипения. Например, вода при нормальном атмосферном давлении кипит при 100 °C, а спирт при 78 °C. Однако с понижением атмосферного давления температура кипения всех веществ немного понижается.

При кипении из воды выделяется растворенный в ней воздух. Поскольку сосуд обычно нагревают снизу, то в нижних слоях воды температура оказывается выше, и пузыри сначала образуются именно там. В эти пузыри испаряется вода, и они насыщаются водяным паром.

Так как пузыри легче самой воды, то они поднимаются вверх. Из-за того, что верхние слои воды не прогрелись до температуры кипения, пузыри остывают и пар в них обратно конденсируется в воду, пузыри становятся тяжелее и снова опускаются.

Когда все слои жидкости прогреваются до температуры кипения, то пузыри уже не опускаются, а поднимаются на поверхность и лопаются. Пар из них оказывается в воздухе. Таким образом, при кипении процесс парообразования происходит не на поверхности жидкости, а по всей ее толще в образующихся пузырьках воздуха. В отличие от испарения, кипение возможно лишь при определенной температуре.

Следует понимать, что когда жидкость кипит, то происходит и обычное испарение с ее поверхности.

От чего зависит скорость испарения жидкости?

Мерой скорости испарения является количество вещества, улетающего в единицу времени с единицы свободной поверхности жидкости. Английский физик и химик Д. Дальтон в начале XIX в. нашел, что скорость испарения пропорциональна разности между давлением насыщенного пара при температуре испаряющейся жидкости и действительным давлением того реального пара, который над жидкостью имеется. Если жидкость и пар находятся в равновесии, то скорость испарения равна нулю. Точнее, оно происходит, но с той же скоростью происходит и обратный процесс – конденсация (переход вещества из газообразного или парообразного состояния в жидкое). Скорость испарения зависит также от того, происходит ли оно в спокойной атмосфере или движущейся; скорость его увеличивается, если образующийся пар сдувается потоком воздуха или откачивается насосом.

Если испарение происходит из жидкого раствора, то разные вещества испаряются с разной скоростью. Скорость испарения данного вещества уменьшается с увеличением давления посторонних газов, например воздуха. Поэтому испарение в пустоту происходит с наибольшей скоростью. Напротив, добавляя в сосуд посторонний, инертный газ, можно очень сильно замедлить испарение.

Иногда испарением называют также сублимацию, или возгонку, т. е. переход твердого вещества в газообразное состояние. Почти все их закономерности действительно похожи. Теплота сублимации больше теплоты испарения приблизительно на теплоту плавления.

Итак, скорость испарения зависит от:

  1. Рода жидкости. Быстрее испаряется та жидкость, молекулы которой притягиваются друг к другу с меньшей силой. Ведь в этом случае преодолеть притяжение и вылететь из жидкости может большее число молекул.
  2. Испарение происходит тем быстрее, чем выше температура жидкости. Чем выше температура жидкости, тем больше в ней число быстро движущихся молекул, способных преодолеть силы притяжения окружающих молекул и вылететь с поверхности жидкости.
  3. Скорость испарения жидкости зависит от площади её поверхности. Эта причина объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь поверхности жидкости, тем большее число молекул одновременно вылетает с неё в воздух.
  4. Испарение жидкости происходит быстрее при ветре. Одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших её, снова в неё возвращается. Поэтому масса жидкости в закрытом сосуде не изменяется, хотя жидкость продолжает испаряться.

Выводы

Мы говорим, что вода испаряется. Но что это значит? Испарение – это процесс, при котором жидкость на воздухе быстро становится газом или паром. Многие жидкости испаряются очень быстро, гораздо быстрее, чем вода. Это относится к алкоголю, бензину, нашатырному спирту. Некоторые жидкости, например ртуть, испаряются очень медленно.

Из-за чего происходит испарение? Чтобы понять это, надо кое-что представлять о природе материи. Насколько мы знаем, каждое вещество состоит из молекул. Две силы оказывают воздействие на эти молекулы. Одна из них – сцепление, которое притягивает их друг к другу. Другая – это тепловое движение отдельных молекул, которое заставляет их разлетаться.

Если сила сцепления выше, вещество остается в твердом состоянии. Если же тепловое движение настолько сильно, что оно превосходит сцепление, то вещество становится или является газом. Если две силы примерло уравновешены, то тогда мы имеем жидкость.

Вода, конечно, является жидкостью. Но на поверхности жидкости есть молекулы, которые движутся настолько быстро, что преодолевают силу сцепления и улетают в пространство. Процесс вылета молекул и называется испарением.

Почему вода испаряется быстрее, когда она находится на солнце или нагревается? Чем выше температура, тем интенсивнее тепловое движение в жидкости. Это значит, что все большее количество молекул набирает достаточную скорость, чтобы улететь. Когда улетают самые быстрые молекулы, скорость оставшихся молекул в среднем замедляется. Почему остающаяся жидкость охлаждается за счет испарения.

Так что, когда вода высыхает, это означает, что она превратилась в газ или пар и стала частью воздуха.

При превращении жидкости в пар молекулы жидкости, преодолевая силы сцепления в поверхностном слое, совершают работу. Так как из жидкости улетают молекулы, имеющие большую скорость, то средняя скорость оставшихся молекул жидкости уменьшается, уменьшается их кинетическая энергия. Поэтому, когда нет притока энергии к жидкости извне, испарение ведет к уменьшению внутренней энергии жидкости, вследствие чего жидкость охлаждается.

Охлаждение жидкости при испарении легко наблюдать, обмотав кисеёй или ватой шарик термометра и полив его эфиром. Быстро испаряющийся эфир отнимает часть внутренней энергии шарика термометра, вследствие чего температура последнего значительно понижается. Если налить на деревянную подставку тонкий слой воды и поставить на него стакан с эфиром, то эфир при обдувании воздухом быстро испаряется и его температура настолько понижается, что стакан примерзает к подставке.

Явление охлаждения при испарении жидкости широко используется в практике. При перевозке скоропортящихся продуктов для охлаждения вагонов в специальных устройствах испаряют жидкий аммиак или жидкую двуокись углерода.

Для получения льда в холодильных установках испаряется жидкий аммиак в змеевиках, которые проходят через раствор соли и охлаждают его ниже 0°С. В раствор соли помещают формы из листовой стали, наполненные водой; в этих формах, омываемых охлаждённым рассолом, и образуются блоки льда.

В настоящее время широкое применение в быту получили электрические холодильники. Рассмотрим принцип действия компрессионного холодильник. Этот холодильник состоит из трёх основных частей; компрессора А, конденсатора В и испарителя С.

В змеевике-конденсаторе посредством компрессора А сжимают какое-нибудь вещество, которое легко переходит из газообразного состояния в жидкое и из жидкого состояния в газообразное. В качестве таких веществ применяют аммиак, фреон-12 (дифтордихлорметан – CF 2 Cl 2), сернистый ангидрид и др.

При сжатии холодильный агент переходит из газообразного состояния в в жидкое. Одновременно с этим компрессор создает в змеевике-испарителе С разрежение. Туда через регулирующий вентиль К, устремляется жид холодильный агент, который быстро там испаряется. Испарение сопровождается поглощением энергии от стенок змеевика С, воздуха, соприкасающегося с ним, и далее от продуктов, находящихся в холодильной камере Вследствие этого в холодильной камере понижается температура и продукты охлаждаются.

Компрессор приводится в действие электродвигателем.

В жарких странах воду обычно содержат в пористых глиняных сосудах. Вода, просачивающаяся через поры сосуда, испаряется, вследствие чего неиспарившаяся вода в сосуде остаётся холодной.