Спектральная плотность случайного процесса. Спектральная плотность

Пусть сигнал s (t ) задан в виде непериодической функции, причем он существует только на интервале (t 1 ,t 2) (пример - одиночный импульс). Выберем произвольный отрезок времени T , включающий в себя интервал (t 1 ,t 2) (см. рис.1).

Обозначим периодический сигнал, полученный из s (t ), в виде s T (t ). Тогда для него можно записать ряд Фурье

где

Подставим выражение для в ряд:

Для того, чтобы перейти к функции s (t ) следует в выражении s T (t ) устремить период к бесконечности. При этом число гармонических составляющих с частотами w =n 2p /T будет бесконечно велико, расстояние между ними будет стремиться к нулю (к бесконечно малой величине: , амплитуды составляющих также будут бесконечно малы. Поэтому говорить о спектре такого сигнала уже нельзя, т.к. спектр становится сплошным .

При предельном переходе в случае Т => , имеем:

Таким образом, в пределе получаем

Внутренний интеграл является функцией частоты. Его называют спектральной плотностью сигнала, или частотной характеристикой сигнала и обозначают ,

рямое (*) и обратное (**) преобразования Фурье вместе называют парой преобразований Фурье. Модуль спектральной плотности определяет амплитудно-частотную характеристику (АЧХ) сигнала, а ее аргумент называют фазо-частотной характеристикой (ФЧХ) сигнала. АЧХ сигнала является четной функцией, а ФЧХ - нечетной.

Смысл модуля S (w ) определяется как амплитуда сигнала (тока или напряжения), приходящаяся на 1 Гц в бесконечно узкой полосе частот, которая включает в себя рассматриваемую частоту w . Его размерность - [сигнал/частота].

9. Свойства преобразования Фурье. Свойства линейности, изменения масштаба времени, другие. Теореме о спектре производной. Теорема о спектре интеграла.

10. Дискретное преобразование Фурье. Помехи радиоприёму. Классификация помех.

Дискретное преобразование Фурье может быть получено непосредственно из интегрального преобразования дискретизаций аргументов (t k = kDt, f n = nDf):

S(f) = s(t) exp(-j2pft) dt, S(f n) = Dt s(t k) exp(-j2pf n kDt), (6.1.1)

s(t) = S(f) exp(j2pft) df, s(t k) = Df S(f n) exp(j2pnDft k). (6.1.2)

Напомним, что дискретизация функции по времени приводит к периодизации ее спектра, а дискретизация спектра по частоте - к периодизации функции. Не следует также забывать, что значения (6.1.1) числового ряда S(f n) являются дискретизаций непрерывной функции S"(f) спектра дискретной функции s(t k), равно как и значения (6.1.2) числового ряда s(t k) являются дискретизацией непрерывной функции s"(t), и при восстановлении этих непрерывных функций S"(f) и s"(t) по их дискретным отсчетам соответствие S"(f) = S(f) и s"(t) = s(t) гарантировано только при выполнении теоремы Котельникова-Шеннона.

Для дискретных преобразований s(kDt) Û S(nDf), и функция, и ее спектр дискретны и периодичны, а числовые массивы их представления соответствуют заданию на главных периодах Т = NDt (от 0 до Т или от -Т/2 до Т/2), и 2f N = NDf (от -f N до f N), где N – количество отсчетов, при этом:

Df = 1/T = 1/(NDt), Dt = 1/2f N = 1/(NDf), DtDf = 1/N, N = 2Tf N . (6.1.3)

Соотношения (6.1.3) являются условиями информационной равноценности динамической и частотной форм представления дискретных сигналов. Другими словами: число отсчетов функции и ее спектра должны быть одинаковыми. Но каждый отсчет комплексного спектра представляется двумя вещественными числами и, соответственно, число отсчетов комплексного спектра в 2 раза больше отсчетов функции? Это так. Однако представление спектра в комплексной форме - не более чем удобное математическое представление спектральной функции, реальные отсчеты которой образуются сложением двух сопряженных комплексных отсчетов, а полная информация о спектре функции в комплексной форме заключена только в одной его половине - отсчетах действительной и мнимой части комплексных чисел в частотном интервале от 0 до f N , т.к. информация второй половины диапазона от 0 до -f N является сопряженной с первой половиной и никакой дополнительной информации не несет.

При дискретном представлении сигналов аргумент t k обычно проставляется номерами отсчетов k (по умолчанию Dt = 1, k = 0,1,…N-1), а преобразования Фурье выполняются по аргументу n (номер шага по частоте) на главных периодах. При значениях N, кратных 2:

S(f n) º S n = s k exp(-j2pkn/N), n = -N/2,…,0,…,N/2. (6.1.4)

s(t k) º s k = (1/N) S n exp(j2pkn/N), k = 0,1,…,N-1. (6.1.5)

Главный период спектра в (6.1.4) для циклических частот от -0.5 до 0.5, для угловых частот от -p до p. При нечетном значении N границы главного периода по частоте (значения ±f N) находятся на половину шага по частоте за отсчетами ±(N/2) и, соответственно, верхний предел суммирования в (6.1.5) устанавливается равным N/2.



В вычислительных операциях на ЭВМ для исключения отрицательных частотных аргументов (отрицательных значений номеров n) и использования идентичных алгоритмов прямого и обратного преобразования Фурье главный период спектра обычно принимается в интервале от 0 до 2f N (0 £ n £ N), а суммирование в (6.1.5) производится соответственно от 0 до N-1. При этом следует учитывать, что комплексно сопряженным отсчетам S n * интервала (-N,0) двустороннего спектра в интервале 0-2f N соответствуют отсчеты S N+1- n (т.е. сопряженными отсчетами в интервале 0-2f N являются отсчеты S n и S N+1- n).

Пример: На интервале Т= , N=100, задан дискретный сигнал s(k) = d(k-i) - прямоугольный импульс с единичными значениями на точках k от 3 до 8. Форма сигнала и модуль его спектра в главном частотном диапазоне, вычисленного по формуле S(n) = s(k)×exp(-j2pkn/100) с нумерацией по n от -50 до +50 с шагом по частоте, соответственно, Dw=2p/100, приведены на рис. 6.1.1.

Рис. 6.1.1. Дискретный сигнал и модуль его спектра.

На рис. 6.1.2 приведена огибающая значений другой формы представления главного диапазона спектра. Независимо от формы представления спектр периодичен, в чем нетрудно убедиться, если вычислить значения спектра для большего интервала аргумента n с сохранением того же шага по частоте, как это показано на рис. 6.1.3 для огибающей значений спектра.

Рис. 6.1.2. Модуль спектра. Рис. 6.1.3. Модуль спектра.

На рис. 6.1.4. показано обратное преобразование Фурье для дискретного спектра, выполненное по формуле s"(k) =(1/100) S(n)×exp(j2pkn/100), которое показывает периодизацию исходной функции s(k), но главный период k={0,99} этой функции полностью совпадает с исходным сигналом s(k).

Рис. 6.1.4. Обратное преобразование Фурье.

Преобразования (6.1.4-6.1.5) называют дискретными преобразованиями Фурье (ДПФ). Для ДПФ, в принципе, справедливы все свойства интегральных преобразований Фурье, однако при этом следует учитывать периодичность дискретных функций и спектров. Произведению спектров двух дискретных функций (при выполнении каких-либо операций при обработке сигналов в частотном представлении, как, например, фильтрации сигналов непосредственно в частотной форме) будет соответствовать свертка периодизированных функций во временном представлении (и наоборот). Такая свертка называется циклической (см. раздел 6.4) и ее результаты на концевых участках информационных интервалов могут существенно отличаться от свертки финитных дискретных функций (линейной свертки).

Из выражений ДПФ можно видеть, что для вычисления каждой гармоники нужно N операций комплексного умножения и сложения и соответственно N 2 операций на полное выполнение ДПФ. При больших объемах массивов данных это может приводить к существенным временным затратам. Ускорение вычислений достигается при использовании быстрого преобразования Фурье.

Помехи

Помехами обычно называют посторонние электрические возмущения, накладывающиеся на передаваемый сигнал и затрудняющие его прием. При большой интенсивности помех прием становится практически невозможным.

Классификация помех:

а) помехи от соседних радиопередатчиков (станций);

б) помехи от промышленных установок;

в) атмосферные помехи (грозы, осадки);

г) помехи, обусловленные прохождением электромагнитных волн через слои атмосферы: тропосферу, ионосферу;

д) тепловые и дробовые шумы в элементах радиоцепей, обусловленные тепловым движением электронов.

Математически сигнал на входе приемника можно представить либо в виде суммы передаваемого сигнала и помехи, и тогда помеху называют аддитивной , либо просто шумом , либо в виде произведения передаваемого сигнала и помехи, и тогда такую помеху называют мультипликативной . Эта помеха приводит к значительным изменениям интенсивности сигнала на входе приемника и объясняет такие явления как замирания .

Наличие помех затрудняет прием сигналов при большой интенсивности помех, распознавание сигнала может стать практически невозможным. Способность системы противостоять мешающему воздействию помехи носит название помехоустойчивости .

Внешние естественные активные помехи представляют собой шумы, возникающие в результате радиоизлучения земной поверхности и космических объектов, работы других радиоэлектронных средств. Комплекс мероприятий, направленных на уменьшение влияния взаимных помех РЭС, называется электомагнитной совместимостью. Этот комплекс включает в себя как технические меры совершенствования радиоаппаратуры, выбор формы сигнала и способа его обработки, так и организационные меры: регламентация частоты, разнесение РЭС в пространстве, нормирование уровня внеполосных и побочных излучений и др.

11. Дискретизация непрерывных сигналов. Теорема Котельникова (отсчётов). Понятие частоты Найквиста. Понятие интервала дискретизации.

Функция не является периодической, поэтому она не может быть разложена в ряд Фурье. С другой стороны, функция из-за неограниченной длительности не интегрируема и поэтому не может быть представлена интегралом Фурье. Для избежания этих трудностей вводится вспомогательная функция , которая совпадает с функцией на интервале и равна нулю вне этого интервала:

(5.15)

Функция интегрируема и для нее существует прямое преобразование Фурье (интеграл Фурье):

(5.16)

Спектральной плотностью мощности случайного сигнала (или просто спектральной плотностью ) называется функция вида:

(5.17)

Спектральная плотность - это функция, характеризующая распределение средних значений квадратов амплитуд гармоник сигнала. Спектральная плотность обладает следующими свойствами:

1. Чем быстрее изменяется стационарный случайный процесс, тем шире график .

2. Отдельные пики на графике спектральной плотности свидетельствуют о наличии у случайного сигнала периодических составляющих.

3. Спектральная плотность является четной функцией:

(5.18)

Спектральная плотность связана с дисперсией сигнала следующим соответствием:

(5.19)

Экспериментально спектральная плотность определяется (вычисляется) по следующей схеме:

Рис. 5.6.

Спектральная плотность связана с корреляционной функцией следующим выражением (по теореме Хинчина-Винера):

(5.20)

(5.21)

Если разложить множители и с помощью формулы Эйлера и учесть, что , и являются четными функциями, а - нечетная функция, то выражения (5.20), (5.21) можно преобразовать к следующему виду:

(5.22)

(5.23)

Выражения (5.23), (5.24) применяют в практических расчетах. Нетрудно заметить, что при выражение (5.24) определяет дисперсию стационарного случайного процесса.:

(5.24)

Соотношения, связывающие корреляционную функцию и спектральную плотность, обладают всеми присущими преобразованию Фурье свойствами и определяют следующие сравнительные характеристики: чем шире график , тем уже график , и наоборот, чем быстрее убывает функция , тем медленнее уменьшается функция . Эту взаимосвязь иллюстрируют графика на рис (5.7), (5.8)

Рис. 5.7.

Рис. 5.8.

Линии 1 на обоих рисунках соответствуют медленно меняющемуся случайному сигналу, в спектре которого преобладают низкочастотные гармоники. Линии 2 соответствуют быстроменяющемуся сигналу, в спектре которого преобладают высокочастотные гармоники.

Если случайный сигнал изменяется во времени очень резко и между его предыдущими и последующими значениями корреляция практически отсутствует, то корреляционная функция имеет вид дельта-функции (линия 3). График спектральной плотности в этом случае представляет горизонтальную прямую в диапазоне. Это указывает на то, что амплитуды гармоник во всем диапазоне частот одинаковы. Такой сигнал называется белым шумом (по аналогии с белым светом, у которого, как известно, интенсивность всех компонент одинакова).



Понятие «белого шума» является математической абстракцией. Физически сигналы в виде белого шума неосуществимы, так как бесконечно широкому спектру соответствует бесконечно большая дисперсия, а следовательно, бесконечно большая мощность. Однако часто реальные системы с конечным спектром можно приближенно рассматривать как белый шум. Это упрощение правомерно в тех случаях, когда спектр сигнала значительно шире полосы пропускания системы, на которую действует сигнал.

Пусть интервал разложения сигнала (см. рис. 2.1) стремится к бесконечности. При его увеличении частота = 2п/Т уменьшается до бесконечно малой величины:

Расстояние между спектральными компонентами при этом уменьшается до бесконечно малой величины, а значения превращаются в текущие значения частоты со (см. рис. 2.2). Интервал разложения стремится к бесконечной величине. Это позволяет при вычислении предела ряда Фурье в комплексной форме заменить знак суммы знаком интеграла, основную частоту О)! = 2п/Т - на?/со, а кратную частоту к(о { заменить текущей частотой со:

Интеграл, который записан в скобках выражения (2.13), обозначим

Тогда выражение (2.13) запишется более компактно:

Выражения (2.14) и (2.15) называются соответственно прямым и обратным преобразованиями Фурье. Функция 5(/со) называется

спектральной плотностью. Она является комплексной и имеет размерность [В/Гц], если размерность сигнала и{Р) [В].

Преобразование Фурье (2.14) может быть вычислено на основе общих правил интегрирования, если сигнал удовлетворяет условию абсолютной интегрируемости:

Это условие означает, что преобразование (2.14) существует для тех сигналов, площадь под кривой |м(?)| которых ограничена.

К этому классу не относятся, например, периодические сигналы, которые не удовлетворяют условию абсолютной интегрируемости. Однако это не означает, что для периодических сигналов спектральная плотность не может быть вычислена. Методы вычислений, специально разработанные для этих целей, используют так называемые обобщенные функции. Примером обобщенной функции является дельта-функция. Некоторые свойства дельта-функции приведены в приложении 1.

Преобразуем спектральную плотность сигналов, которые удовлетворяют условию абсолютной интегрируемости. Такие сигналы ограничены во времени.

С учетом формулы Эйлера перепишем выражение (2.14): где

Модуль |5(/со)| называется спектральной плотностью амплитуд сигнала или амплитудно-частотной характеристикой

(АЧХ) спектральной плотности сигнала. Функция ср(со) определяет фазо-частотную характеристику (ФЧХ) спектральной плотности сигнала. АЧХ и ФЧХ спектральной плотности являются непрерывными функциями частоты.

Перейдем к анализу спектральной плотности сигналов, не удовлетворяющих условию абсолютной интегрируемости. Такие сигналы не ограничены во времени и имеют бесконечно большую энергию.

На основе сигнала Ц)(?), удовлетворяющего условию абсолютной интегрируемости, построим периодически повторяющийся сигнал

и вычислим его спектральную плотность:
где

Размерность спектральной плотности периодически повторяющегося сигнала определяется размерностью спектральной плотности непериодического сигнала, из которого формируется периодически повторяющийся сигнал, т.е. [В/Гц].

Первый сомножитель полученного выражения в равенстве (2.16) определяет спектральную плотность ограниченного во времени сигнала и 0 (?), второй - спектральную плотность периодически повторяющейся дельта-функции

Убедимся в этом, вычислив указанную плотность:

При вычислении интеграла использовано фильтрующее свойство дельта-функции (см. приложение 1).

Если периодически повторяющуюся дельта-функцию разложить в ряд Фурье в комплексной форме, то се спектральную плотность можно выразить иначе:

При выводе последней формулы использовано выражение дельта-функции в частотной области. Приравнивая выражения спектральных плотностей, получим

Эта функция равна нулю, если со Ф к(х) ь и равна если со = к(о { . Подставим в (2.16) новое выражение 5 ф (/со):

Спектральная плотность периодически повторяющегося сигнала определяется значениями спектральной плотности ограниченного во времени сигнала г/ 0 (?), отсчитанными через интервал, равный со^ = 2л /Т.

Вычислим значение спектральной плотности ограниченного отрезком времени Т сигнала:

Умножим левую и правую части равенства на коэффициент 2/Т:

где а(/&а>1) - спектр ограниченного во времени сигнала в базисе экспоненциальных функций.

С учетом последней формулы спектральную плотность периодически повторяющегося сигнала запишем в виде

где модуль спектра определяется в базисе экспоненциальных функций формулой (2.9), а спектр фаз - формулой (2.10).

Значения АЧХ и ФЧХ спектральной плотности ограниченного во времени сигнала г/о(0> отсчитанные через интервал (щ = 2п/Т в точках частотной оси кщ, к = 0, ±1, ±2,..., определяют АЧХ и ФЧХ спектральной плотности этого периодического сигнала.

Рассмотрим некоторые свойства спектральной плотности сигнала, удовлетворяющие условию абсолютной интегрируемости.

  • 1. Спектральная плотность (2.14) - это комплексная и непрерывная функция частоты со, определенная в бесконечном интервале частот.
  • 2. АЧХ и ФЧХ спектральной плотности удовлетворяют уравнениям

где +(л)? - выбранные значения частот.

3. Преобразования Фурье (2.14), (2.15) являются линейными преобразованиями. Поэтому спектральная плотность суммы сигналов равна сумме спектральных плотностей этих сигналов, а сумма сигналов определяется обратным преобразованием Фурье от суммы их спектральных плотностей:


где Uj(t) - i- й сигнал; б’/О"оз) - спектральная плотность г-го сигнала.

4. Спектральная плотность сигнала, ограниченная бесконечно малыми интервалами 2лА/(рис. 2.3) вблизи, например, частот -со 0 , со (), определяет гармонический сигнал с бесконечно малой амплитудой.

Убедимся в этом, считая, что из-за малости А/ значения спектральной плотности около частот -ю () , (н () равны соответственно S (-jco 0) = |А(70) 0)| _ - /

Рис. 2.3.

Поскольку в бесконечно малых интервалах спектральная плотность остается постоянной, можно вынести за знак интегралов выражения |50"со 0)|е;ф(10о) и |50"м 0)|е - - ,ф(а)о) :

Как следует из полученной формулы, амплитуда полученного сигнала определяется значением спектральной плотности, функцией (бшл -)/^ и весьма малым диапазоном частот А/. При стремлении Д/ к нулю функция (81 пх)/х стремится к единице, а амплитуда становится равной нулю.

5. Если все составляющие спектральной плотности ограниченного во времени сигнала сдвигаются по фазе на +(л)?о> то этот сиг- нал сдвигается во времени на величину +? 0 . Действительно:

6. При передаче ограниченного во времени сигнала через линейный четырехполюсник, АЧХ которого в полосе пропускания равна постоянной величине К 0 , а фазовая характеристика ср(со) = = -а)? 0 > форма этого сигнала остается неизменной, а сигнал запаздывает во времени на величину? 0:

Решение. Спектральная плотность задержанного на время? 0 импульса равна

где м(?) - импульс, который расположен в начале координат;

Вычисления дают следующий результат:

Запишем эту плотность в виде где

Последнее выражение определяет спектральную плотность сигнала и(?). В диапазоне частот спектральная плотность является положительной величиной, д(со) = = 1. Поэтому в этом диапазоне фазовая характеристика ф(со) = 0, так как (о)) = = со8ф(со) + ^ з1п ср(со).

В диапазоне частот спектральная плотность является отрицательной величиной. Фазовая характеристика в этом диапазоне равна ср(со) = я, так как

АЧХ спектральной плотности задержанного импульса совпадает с АЧХ спектральной плотности сигнала «(?), а ФЧХ определяется выражением

Спектральная плотность прямоугольного импульса г/(?), АЧХ и ФЧХ этой плотности изображены на рис. 2.4.

Рис. 2.4.

Пример 2.3. Вычислить спектральную плотность кодированного сигнала

где ак - элементы кодового слова, равные -1 или 1, т.е. = +1, и 0 (0 - прямоугольный импульс с амплитудой А и длительностью т и.

Решение. Применим формулу (2.14):

После замены переменной , получим

Пример 2.4. Вычислить спектральную плотность периодического сигнала, записанного в виде ряда Фурье в тригонометрической форме [см. формулу (2.11)]. Записать выражения АЧХ и ФЧХ постоянной, синусной и косинусной составляющих этого ряда.

Решение. Функции, определяющие формулу (2.11), - периодические, за исключением постоянной составляющей. Эту составляющую аппроксимируем периодической косинусной функцией с частотой, которая стремится к нулю:

Вычислим спектральную плотность периодического сигнала u(t ) = = a cos fit, записав его в виде

щ(():

Значение первого слагаемого, стоящего в скобках выражения, равно 1, если со = -Q, и равно 0 для других дискретных значений частоты со = kfl, k = 0, 1, ±2, ±3, ±4, .... Значение второго слагаемого равно 1, если со = Q, и равно 0 для других дискретных значений частоты to = kQ, k = 0, -1, ±2, ±3, ±4, .... Учитывая это, найдем спектральную плотность, АЧХ и ФЧХ спектральной плотности периодического сигнала u(t ) = a cos Q?:

Значения АЧХ спектральной плотности в точках частотной оси со = +?2 равны паТ/(2п) = аТ/2.

Значения ФЧХ спектральной плотности гармонического сигнала в точках частотной оси со = равны 0.

По формуле спектральной плотности косинусоидального сигнала можно найти спектральную плотность постоянной составляющей:

АЧХ спектральной плотности постоянной составляющей определяется значением

Вычисление спектральной плотности синусоидального сигнала аналогично вычислению спектральной плотности косинусоидального сигнала.

Запишем периодический сигнал u(t) = bsinQ? в виде

где

Спектральная плотность сигнала и 0 (О:

По найденному выражению найдем спектральную плотность периодического сигнала u(t ) = b sin Qt:

АЧХ спектральной плотности этого сигнала в точках частотной оси со = +П:

Значения ФЧХ спектральной плотности сигнала в точках частотной оси со = +П равны -я/2, п/ 2.

Полученные формулы для спектральных плотностей гармонических сигналов позволяют найти спектральную плотность суммы этих сигналов:

где - модуль спектра, равный амплитуде гармонического

сигнала; ф(П) = -экЛ%(Ь/а) - значение фазы спектра, равное значению начальной фазы этого сигнала.

Ряд Фурье в тригонометрической форме (2.11) содержит бесконечно большое число сумм гармонических сигналов:

Спектральная плотность этой суммы находится по последнему выражению спектральной плотности заменой П = ко)^. Используя эту формулу и формулу спектральной плотности постоянной составляющей, получим выражение спектральной плотности сигнала, записанного в виде ряда Фурье в тригонометрической форме:

где - модуль спектра; ф^о^) = - значение фазы спектра, равное значению начальной фазы гармонического сигнала.

Для периодической последовательности импульсов, приведенной на рис. 2.1,

Спектральная плотность


Вычисленная спектральная плотность является математической моделью периодически повторяющегося видеоимпульса прямоугольной формы в частотной области. График спектральной плотности показан на рис. 2.5. Дельта-функции на этом рисунке условно изображены стрелками.


Рис. 2.5.

импульсов

График содержит информацию о постоянной составляющей и гармонических сигналах, входящих в ряд Фурье в тригонометрической форме.

Пример 2.5. По спектральной плотности, вид которой приведен на рис. 2.6, вычислить выражение для сигнала «(?)

Рис. 2.6.

Решение. Спектральная плотность сигнала ограничена значениями частоты, равными -со в, со в. Найдем сигнал.

Рассмотрим так называемую энергетическую форму интеграла Фурье. В главе 5 были приведены формулы (7.15) и (7.16), дающие переход от функции времени к изображению Фурье и обратно. Если рассматривается некоторая случайная функция времени х (с), то для нее эти формулы могут быть записаны в виде

и проинтегрируем по всем

заменим выражением (11.54):

Величина, находящаяся в квадратных скобках (11.57), как нетрудно видеть, является исходной функцией времени (11.55). Поэтому в результате получается так называемая формула Релея (теорема Парсеваля), которая и соответствует энергетической форме интеграла Фурье:

Правая часть (11.58) и (11.39) представляет собой величину, пропорциональную энергии рассматриваемого процесса. Так, например, если рассматривается ток, протекающий по некоторому резистору с сопротивлением К, то энергия, выделившаяся в этом резисторе за время и будет

Формулы (11.58) и (11.59) и выражают энергетическую форму интеграла Фурье.

Однако эти формулы неудобны тем, что для большинства процессов энергия за бесконечный интервал времени стремится также к бесконечности. Поэтому удобнее иметь дело не с энергией, а со средней мощностью процесса, которая будет получена, если энергию поделить на интервал наблюдения. Тогда формулу (11.58) можно представить в виде

Вводя обозначение

носит название спектральной плотности. Важным

По своему физическому смыслу спектральная плотность есть величина, которая пропорциональна средней мощности процесса в интервале частот от со до со + й?со.

В некоторых случаях спектральную плотность рассматривают только для положительных частот, удваивая ее при этом, что можно сделать, так как спектральная плотность является четной функцией частоты. Тогда, например, формула (11.62) должна быть записана в виде

- спектральная плотность для положительных частот.

так как при этом формулы получают более симметричный характер.

Весьма важным обстоятельством является то, что спектральная плотность и корреляционная функция случайных процессов представляют собой взаимные преобразования Фурье, т. е. они связаны интегральными зависимостями типа (11.54) и (11.55). Это свойство приводится без доказательств .

Таким образом, могут быть записаны следующие формулы:

Так как спектральная плотность и корреляционная функция представляют собой четные вещественные функции, то иногда формулы (11.65) и (11.66) представляют в более простом виде;

)

Это вытекает из того, что имеют место равенства:

и мнимые части могут быть отброшены после подстановки в (11.65) и (11.66), так как слева стоят вещественные функции.

заключается в том, что чем уже график спектральной плотности (рис, 11.16, а), т. е. чем меньшие частоты представлены в спектральной плотности, тем медленнее изменяется величина х во времени. Наоборот, чем шире график спектральной плотности (рис. 11.16, б), т. е. чем большие частоты представлены в спектральной плотности, тем тоньше структура функции х (г) и тем быстрее происходят изменения.г во времени.

Как видно из этого рассмотрения, связь между видом спектральной плотности и видом функции времени получается обратной но сравнению со связью между корреляционной функцией и самим процессом (рис. 11.14). Отсюда вытекает, что более широкому графику спектральной плотности должен соответствовать более узкий график корреляционной функции и наоборот.

И 8 (со). Эти функции, в отличие от импульсных функций, рассматривавшихся в главе 4, являются четными. Это означает, что функция 8 (т) расположена симметрично относительно начала координат и может быть определена следующим образом;

Аналогичное определение относится к функции 8 (со). Иногда в рассмотрение вводят нормированную спектральную плотность, являющуюся изображением Фурье нормированной корреляционной функции (11.52):

и следовательно,

где О - дисперсия.

Взаимные спектральные плотности также являются мерой связи между двумя случайными величинами. При отсутствии связи взаимные спектральные плотности равны нулю.

Рассмотрим некоторые примеры.

Эта функция изображена на рис. 11.17, а. Соответствующее ей изображение Фурье на основании табл. 11.3 будет

Спектр процесса состоит из единственного пика типа импульсной функции, расположенной в начале координат (рис. 11,17, б).

Это означает, что вся мощность рассматриваемого процесса сосредоточена на пулевой частоте, что и следовало ожидать.

Эта функция изображена на рис. 11.18, а, В соответствии с табл. 11.3 спектральная плотность будет

3. Для периодической функции, разлагаемой в ряд Фурье

кроме периодической части будет содержать непериодическую составляющую, то спектр этой функции будет содержать, наряду с отдельными линиями типа импульсной функции, также и непрерывную часть (рис. 11.20). Отдельные пики на графике спектральной плотности указывают на присутствие в исследуемой функции скрытых нериодичностей.

не содержит периодической части, то она будет иметь непрерывный спектр без ярко выраженных пиков.

Рассмотрим некоторые стационарные случайные процессы, имеющие значение при исследовании систем управления. Будем рассматривать только центрированные

При этом средний квадрат случайной величины будет равен дисперсии:

учет постоянного смещения в системе управления является элементарным.

(рис. 11.21, а):

Пример такого процесса - тепловые шумы резистора, которые дают уровень спектральной плотности хаотического напряжения на этом резисторе

Абсолютная температура.

На основании (11,68) спектральной плотности (11.71) соответствует корреляционная функция

отсутствует корреляция между последующими и предыдущими значениями случайной величины х.

а следовательно, бесконечно большая мощность.

Чтобы получить физически реальный процесс, удобно ввести понятие белого шума с ограниченной спектральной плотностью (рис. 11.21, б):

Полоса частот для спектральной плотности.

Этому процессу соответствует корреляционная функция

Среднеквадратичное значение случайной величины пропорционально корню квадратному из полосы частот:

Часто бывает удобнее аппроксимировать зависимость (11.73) плавной кривой. Для этой цели можно, например, использовать выражение

Коэффициент, определяющий ширину полосы частот.

Процесс приближается к белому шуму, так

как для этих частот

Интегрирование (11.77) по всем частотам дает возможность определить дисперсию:

Поэтому спектральная плотность (11.77) может быть записана в другом виде:

Корреляционная функция для этого процесса

Корреляционная функция также изображена на рис. 11.21, в.

Переход от одного значения к другому совершается мгновенно. Интервалы времени подчиняются закону распределения Пуассона (11.4).

График такого вида получается, например, в первом приближении при слежении радиолокатором за движущейся целью. Постоянное значение скорости соответствует движению цели по прямой. Перемена знака или величины скорости соответствует маневру цели.

Будет средним значением интервала времени, в течение которого угловая скорость сохраняет постоянное значение. Применительно к радиолокатору это значение будет средним временем движения цели по прямой.

Для определения корреляционной функции необходимо найти среднее значение произведения

При нахождении этого произведения могут быть два случая.

относятся к одному интервалу. Тогда среднее значение произведения угловых скоростей будет равно среднему квадрату угловой скорости или дисперсии:

относятся к разным интервалам. Тогда среднее значение произведения скоростей будет равно пулю:

так как произведения с положительным и отрицательным знаками будут равновероятными. Корреляционная функция будет равна

Вероятность нахождения их в разных интервалах.

Вероятность отсутствия

Для интервала времени

так как эти события независимые.

В результате для конечного промежутка Ат получаем

Знак модуля при т поставлен вследствие того, что выражение (11.80) должно соответствовать четной функции. Выражение для корреляционной функции совпадает с (11.79). Поэтому спектральная плотность рассматриваемого процесса должна совпадать с (11.78):

Заметим, что в отличие от (11.78) формула спектральной плотности (11.81) записана для угловой скорости процесса (рис. 11.22). Если перейти от угловой скорости к углу, то получится нестационарный случайный процесс с дисперсией, стремящейся к бесконечности. Однако в большинстве случаев следящая система, на входе которой действует этот процесс, обладает астатизмом первого и более высоких порядков. Поэтому первый коэффициент ошибки с0 у следящей системы равен нулю и ее ошибка будет определяться только входной скоростью и производными более высоких порядков, относительно которых процесс стационарен. Это дает возможность использовать спектральную плотность (11.81) при расчете динамической ошибки следящей системы.

3. Нерегулярная качка. Некоторые объекты, например корабли, самолеты и другие, находясь под действием нерегулярных возмущений (нерегулярное волнение, атмосферные возмущения и т. п.), движутся но случайному закону Так как сами объекты имеют определенную им свойственную, частоту колебаний, то они обладают свойством подчёркивать те частоты возмущений, которые близки к их собственной частоте колебаний. Получающееся при этом случайное движение объекта называют нерегулярной качкой в отличие от регулярной качки, представляющей собой периодическое движение.

Типичный график нерегулярной качки изображен на рис. 11.23. Из рассмотрения этого графика видно, что, несмотря на случайный характер, это

движение довольно близко к периодическому.

В практике корреляционную функцию нерегулярной качки часто аппроксимируют выражением

Дисперсия.

находятся обычно путем обработки экспериментальных данных (натурных испытаний).

Корреляционной функции (11.82) соответствует спектральная плотность (см. табл. 11.3)

Неудобством аппроксимации (11.82) является то, что этой формулой можно описать поведение какой-либо одной величины нерегулярной качки (угла, угловой скорости или углового ускорения), В этом случае величина О будет соответствовать дисперсии угла, скорости или ускорения.

Если, например, записать формулу (11.82) для угла, то этому процессу будет соответствовать нерегулярная камка с дисперсией для угловых скоростей, стремящейся к бесконечности, т. е. это будет физически нереальный процесс.

Более удобная формула для аппроксимации угла качки

Однако и эта аппроксимация соответствует физически нереальному процессу, так как дисперсия углового ускорения получается стремящейся к бесконечности.

Для получения конечной дисперсии углового ускорения требуются еще более сложные формулы аппроксимации, которые здесь не приводятся.

Типичные кривые для корреляционной функции и спектральной плотности нерегулярной качки приведены на рис. 11.24.

При исследовании автоматических систем управления удобно пользоваться еще одной характеристикой стационарного случайного процесса, называемой спектральной плотностью. Во многих случаях, особенно при изучении преобразования стационарных случайных процессов линейными системами управления, спектральная плотность оказывается более удобной характеристикой, чем корреляционная функция. Спектральная плотность случайного процесса определяется как преобразование Фурье корреляционной функцией , т. е.

Если воспользоваться формулой Эйлера то (9.52) можно представить как

Так как нечетная функция то в последнем выражении второй интеграл равен нулю. Учитывая, что четная функция получаем

Так как то из (9.53) следует, что

Таким образом, спектральная плотность является действительной и четной функцией частоты о). Поэтому на графике спектральная плотность всегда симметрична относительно оси ординат.

Если спектральная плотность известна, то по формуле обратного преобразования Фурье можно найти соответствующую ей корреляционную функцию:

Используя (9.55) и (9.38), можно установить важную зависимость между дисперсией и спектральной плотностью случайного процесса:

Термин «спектральная плотность» обязан своим происхождением теории электрических колебаний. Физический смысл спектральной плотности можно пояснить следующим образом.

Пусть - напряжение, приложенное к омическому сопротивлению 1 Ом, тогда средняя мощность рассеиваемая на этом сопротивлении за время равна

Если увеличивать интервал наблюдения до бесконечных пределов и воспользоваться (9.30), (9.38) и (9.55) при то можно формулу для средней мощности записать так:

Равенство (9.57) показывает, что средняя мощность сигнала может быть представлена в виде бесконечной суммы бесконечно малых слагаемых , которая распространяется на все частоты от 0 до

Каждое элементарное слагаемое этой суммы играет роль мощности, соответствующей бесконечно малому участку спектра, заключенному в пределах от до Каждая элементарная мощность - пропорциональна значению функции для данной частоты Следовательно, физический смысл спектральной плотности состоит в том, что она характеризует распределение мощности сигнала по частотному спектру.

Спектральная плотность может быть найдена экспериментально через среднюю величину квадрата амплитуды гармоник реализации случайного процесса. Приборы, применяемые для этой цели и состоящие анализатора спектра и вычислителя среднего значения квадрата амплитуды гармоник, называются спектрометрами. Экспериментально находить спектральную плотность сложнее, чем корреляционную функцию, поэтому на практике чаще всего спектральную плотность вычисляют но известной корреляционной функции с помощью формулы (9.52) или (9.53).

Взаимная спектральная плотность двух стационарных случайных процессов определяется как преобразование Фурье от взаимной корреляционной функции т. е.

По взаимной спектральной плотности можно, применяя к (9.58) обратное преобразование Фурье, найти выражение для взаимной корреляционной функции:

Взаимная спектральная плотность является мерой статистической связи между двумя стационарными случайными процессами: Если процессы некоррелированы и имеют равные нулю средние значения, то взаимная спектральная плотность равна нулю, т. е.

В отличие от спектральной плотности взаимная спектральная плотность не является четной функцией о и представляет собой не вещественную, а комплексную функцию.

рассмотрим некоторые свойства спектральных плотностей

1 Спектральная плотность чистого случайного процесса, или белого шума, постоянна во всем диапазоне частот (см. рис. 9.5, г):

Действительно, подставляя в (9.52) выражение (9.47) для корреляционной функции белого шума, получим

Постоянство спектральной плотности белого шума во всем бесконечном диапазоне частот, полученное в последнем выражении, означает, что энергия белого шума распределена по всему спектру равномерно, а суммарная энергия процесса равна бесконечности. Это указывает на физическую нереализуемость случайного процесса типа белого шума. Белый шум является математической идеализацией реального процесса. В действительности частотный спектр западает на очень высоких частотах (как показано пунктиром на рис. 9.5, г). Если, однако, эти частоты настолько велики, что при рассмотрении какого-либо конкретного устройства они не играют роли (ибо лежат вне полосы частот, пропускаемых этим устройством), то идеализация сигнала в виде белого шума упрощает рассмотрение и поэтому вполне целесообразна.

Происхождение термина «белый шум» объъясняется аналогией такого процесса с белым светом, имеющим одинаковые интенсивности всех компонент, и тем, что случайные процессы типа белого шума впервые были выделены при исследовании тепловых флуктуациоиных шумов в радиотехнических устройствах.

2. Спектральная плотность постоянного сигнала представляет собой -функцию, расположенную в начале координат (см. рис. 9.5, а), т. е.

Чтобы доказать это, допустим, что спектральная плотность имеет вид (9.62), и иандем по (9.55) соответствующую ей корреляционную функцию. Так как

то при получаем

Это (в соответствии со свойством 5 корреляционных функций) означает, что сигнал, соответствующий спектральной плотности, определяемой (9.62), является постоянным сигналом, равным

Тот факт, что спектральная плотность представляет собой -функцию при означает, что вся мощность постоянного сигнала сосредоточена на нулевой частоте, что и следовало ожидать.

3. Спектральная плотность периодического сигнала представляет собой две -функции, расположенные симметрично относительно начала кординат при (см. рис. 9.5, д), т. е.

Чтобы доказать это, допустим, что спектральная плотность имеет вид (9.63), и найдем по (9.55) соответствующую ей корреляционную функцию:

Это (в соответствии со свойством 6 корреляционных функций) означает, что сигнал, соответствующий спектральной плотности определяемой (9.63), является периодическим сиг налом, равным

Тот факт, что спектральная плотность представляет собой две -функции, расположенные при означает, что вся мощность периодического сигнала сосредоточена на двух частотах: Если рассматривать спектральную плотность только в области положительных частот, то получим,

что вся мощность периодического сигнала будет сосредоточена на одной частоте .

4. Спектральная плотность временной функции, разлагаемой в ряд Фурье имеет на основании изложенного выше вид

Этой спектральной плотности соответствует линейчатый спектр (рис. 9.9) с -функциями, расположенными на положительных и отрицательных частотах гармоник. На рис. 9.9 -функции условно изображены так, что их высоты показаны пропорциональными коэффициентам при единичной -функции, т. е. величинам и

которая полностью совпадает с корреляционной функцией, определяемой по (9.45).

Из рис. 9.5, б, в видно, что чем шире график спектральной плотности тем уже график соответствующей корреляционной функции и наоборот. Это соответствует физической сущности процесса: чем шире график спектральной плотности, т. е. чем более высокие частоты представлены в спектральной плотности, тем выше степень изменчивости случайного процесса и тем же графики корреляционной функции. Другими словами, связь между видом спектральной плотности и видом функции времени получается обратной по сравнению со связью между корреляционной функцией и видом функции времени. Это особенно ярко проявляется при рассмотрении постоянного сигнала и белого шума. В первом случае корреляционная функция имеет вид горизонтальной прямой, а спектральная плотность имеет вид -функции (см. рис. 9.5, а). Во втором случае (см. рис. 9.5, г) имеет место обратная картина.

6. Спектральная плотность случайного процесса, на кото рой наложены периодические составляющие, содержит непрерывную часть и отдельные -функции, соответствующие частотам периодических составляющих.

Отдельные пики на графике спектральной плотности указывают на то, что случайный процесс смешан со скрытыми периодическими составляющими, которые могут и не обнаруживаться при первом взгляде на отдельные записи процесса. Если, например, на случайный процесс наложен один периодический сигнал с частотой то график; сцектральной плотности имеет вид, показанный на рис. 9.10,

Иногда в рассмотрение вводят нормированную

спектральную плотность являющуюся изображением Фурье нормированной корреляционной функции (9.48):

Нормированная спектральная плотность имеет размерность времени.