Любая система счисления. Перевод из десятичной системы счисления

Разберем одну из важнейших тем по информатике - . В школьной программе она раскрывается довольно "скромно", скорее всего, из-за недостатка отведенных на нее часов. Знания по этой теме, особенно на перевод систем счисления , являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты. Ниже подробным образом рассмотрены такие понятия, как позиционные и непозиционные системы счисления , даны примеры этих систем счисления, представлены правила перевода целых десятичных чисел, правильных десятичных дробей и смешанных десятичных чисел в любую другую систему счисления, перевода чисел из любой системы счисления в десятичную, перевода из восьмеричной и шестнадцатиричной систем счисления в двоичную систему счисления . На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. Скоро: По каждой теме раздела, помимо подробного теоретического материала, будут представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас появится возможность совершенно бесплатно скачать с файлообменника уже готовые подробные решения к данным задачам, иллюстрирующие различные способы получения верного ответа.

епозиционные системы счисления.

Непозиционные системы счисления - системы счисления, в которых количественное значение цифры не зависит от ее местоположения в числе.

К непозиционным системам счисления относится, например, римская, где вместо цифр - латинские буквы.

I 1 (один)
V 5 (пять)
X 10 (десять)
L 50 (пятьдесят)
C 100 (сто)
D 500 (пятьсот)
M 1000 (тысяча)

Здесь буква V обозначает 5 независимо от ее местоположения. Однако стоит упомянуть о том, что хотя римская система счисления и является классическим примером непозиционной системы счисления, не является полностью непозиционной, т.к. меньшая цифра, стоящая перед большей, вычитается из нее:

IL 49 (50-1=49)
VI 6 (5+1=6)
XXI 21 (10+10+1=21)
MI 1001 (1000+1=1001)

озиционные системы счисления.

Позиционные системы счисления - системы счисления, в которых количественное значение цифры зависит от ее местоположения в числе.

Например, если говорить о десятичной системе счисления, то в числе 700 цифра 7 означает "семь сотен", но эта же цифра в числе 71 означает "семь десятков", а в числе 7020 - "семь тысяч".

Каждая позиционная система счисления имеет свое основание . В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.

    Например:
  • Двоичная - позиционная система счисления с основанием 2.
  • Четверичная - позиционная система счисления с основанием 4.
  • Пятиричная - позиционная система счисления с основанием 5.
  • Восьмеричная - позиционная система счисления с основанием 8.
  • Шестнадцатиричная - позиционная система счисления с основанием 16.

Чтобы успешно решать задачи по теме "Системы счисления", ученик должен знать наизусть соответствие двоичных, десятичных, восьмеричных и шестнадцатиричных чисел до 16 10:

10 с/с 2 с/с 8 с/с 16 с/с
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Полезно знать, как получаются числа в этих системах счисления. Можно догадаться, что в восьмеричной, шестнадцатиричной, троичной и других позиционных системах счисления все происходит аналогично привычной нам десятичной системе:

К числу прибавляется единица и получается новое число. Если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1 и т.д.

Этот "переход единицы" как раз и пугает большинство учеников. На самом же деле все довольно просто. Переход происходит, если разряд единиц становится равен основанию системы счисления , мы увеличиваем число десятков на 1. Многие, помня старую добрую десятичную систему моментально путаются в разряда и в этом переходе, ведь десятичный и, например, двоичный десятки - разные вещи.

Отсюда у находчивых учеников появляются "свои методики" (на удивление... работающие) при заполнении, например, таблиц истинности, первые столбцы (значения переменных) которых, фактически, заполняются двоичными числами в порядке возрастания.

Для примера разберем получение чисел в восьмеричной системе : К первому числу (0) прибавляем 1, получаем 1. Затем к 1 прибавляем 1, получаем 2 и т.д. до 7. Если мы прибавим к 7 единицу, получим число равное основанию системы счисления, т.е. 8. Тогда нужно увеличить на единицу разряд десятков (получаем восьмеричный десяток - 10). Далее, очевидно, идут числа 11, 12, 13, 14, 15, 16, 17, 20, ..., 27, 30, ..., 77, 100, 101...

равила перевода из одной системы счисления в другую.

1 Перевод целых десятичных чисел в любую другую систему счисления.

Число нужно разделить на новое основание системы счисления . Первый остаток от деления - это и есть первая младшая цифра нового числа. Если частное от деления меньше или равно новому основанию, то его (частное) нужно снова разделить на новое основание. Деление нужно продолжать, пока не получим частное меньше нового основания. Это есть старшая цифра нового числа (нужно помнить, что, например, в шестнадцатиричной системе после 9 идут буквы, т.е. если в остатке получили 11, нужно записать его как B).

Пример ("деление уголком"): Переведем число 173 10 в восьмеричную систему счисления.


Таким образом, 173 10 =255 8

2 Перевод правильных десятичных дробей в любую другую систему счисления.

Число нужно умножить на новое основание системы счисления. Цифра, перешедшая в целую часть - старшая цифра дробной части нового числа. для получения следующей цифры дробную часть получившегося произведения опять нужно умножать на новое основание системы счисления, пока не произойдет переход в целую часть. Умножение продолжаем, пока дробная часть не станет равна нулю, либо пока не дойдем до указанной в задаче точности ("... вычислить с точностью, например, двух знаков после запятой").

Пример: Переведем число 0,65625 10 в восьмеричную систему счисления.

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами.

В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы:

Например, VI = 5 + 1 = 6, а IX = 10-1 = 9.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе называется позицией. Первая известная нам система, основанная на позиционном принципе - шестидесятеричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим - десятки. Следы вавилонской системы сохранились до наших дней в способах измерения и записи величин углов и промежутков времени.

Однако наибольшую ценность для нас имеет индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной, так как в ней десять цифр.

Для того чтобы лучше понять различие позиционной и непозиционной систем счисления, рассмотрим пример сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в рассматриваемых числах слева направо сравниваются цифры, стоящие в одинаковых позициях. Большая цифра соответствует большему значению числа. Например, для чисел 123 и 234, 1 меньше 2, поэтому число 234 больше, чем число 123. В непозиционной системе счисления это правило не действует. Примером этого может служить сравнение двух чисел IX и VI. Несмотря на то, что I меньше, чем V, число IX больше, чем число VI.

Основание системы счисления, в которой записано число, обычно обозначается нижним индексом. Например, 5557 - число, записанное в семеричной системе счисления. Если число записано в десятичной системе, то основание, как правило, не указывается. Основание системы - это тоже число, и его мы будем указывать в обычной десятичной системе. Вообще, число х может быть представлено в системе с основанием р, как х = а п х р п + а п _! х р п_1 + а! х р 1 + а 0 х р°, где а п...а 0 - цифры в представлении данного числа. Так, например,

  • 1035 10 = 1 х Ю 3 +0 х Ю 2 +3 х Ю 1 + 5 х 10°;
  • 1010 2 = 1 X 2 3 + 0 X 2 2 + 1 X 2 1 + О X 2° = 10.

Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Вообще говоря, этих систем счисления обычно хватает для полноценной работы как человека, так и вычислительной машины. Однако иногда в силу различных обстоятельств все-таки приходится обращаться к другим системам счисления, например к троичной, семеричной или системе счисления по основанию 32.

Для того чтобы нормально оперировать с числами, записанными в таких нетрадиционных системах, важно понимать, что принципиально они ничем не отличаются от привычной нам десятичной. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме.

Почему же мы не пользуемся другими системами счисления? В основном потому, что в повседневной жизни мы привыкли пользоваться десятичной системой счисления, и нам не требуется никакая другая. В вычислительных же машинах используется двоичная система счисления, так как оперировать над числами, записанными в двоичном виде, довольно просто.

Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе. Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются.

Двоичная система счисления. Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам. Но, не всегда и не везде люди пользовались десятичной системой счисления. В Китае, например, долгое время применялась пятеричная система счисления. В ЭВМ используют двоичную систему потому, что она имеет ряд преимуществ перед другими:

  • ? для ее реализации используются технические элементы с двумя возможными состояниями (есть ток - нет тока, намагничен - ненамагничен);
  • ? представление информации посредством только двух состояний надежно и помехоустойчиво;
  • ? возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;
  • ? двоичная арифметика проще десятичной (двоичные таблицы сложения и умножения предельно просты).

В двоичной системе счисления всего две цифры, называемые двоичными (binary digits). Сокращение этого наименования привело к появлению термина «бит», ставшего названием разряда двоичного числа. Веса разрядов в двоичной системе изменяются по степеням двойки.

Поскольку вес каждого разряда умножается либо на 0, либо на 1, то в результате значение числа определяется как сумма соответствующих значений степеней двойки. Если какой-либо разряд двоичного числа равен 1, то он называется значащим разрядом. Запись числа в двоичном виде намного длиннее записи в десятичной системе счисления.

Арифметические действия, выполняемые в двоичной системе, подчиняются тем же правилам, что и в десятичной системе. Только в двоичной системе перенос единиц в старший разряд возникает чаще, чем в десятичной. Вот как выглядит таблица сложения в двоичной системе:

Таблица 1.3

Варианты сложения

Рассмотрим подробнее, как происходит процесс умножения двоичных чисел. Пусть надо умножить число 1101 на 101 (оба числа в двоичной системе счисления). Машина делает это следующим образом: она берет число 1101, и если первый элемент второго множителя равен 1, то она заносит его в сумму. Затем сдвигает число 1101 влево на одну позицию, получая тем самым 11010, и если второй элемент второго множителя равен единице, то тоже заносит его в сумму. Если элемент второго множителя равен нулю, то сумма не изменяется.

Двоичное деление основано на методе, знакомом вам по десятичному делению, т. е. сводится к выполнению операций умножения и вычитания. Выполнение основной процедуры - выбор числа, кратного делителю и предназначенного для уменьшения делимого, здесь проще, так как таким числом могут быть только либо 0, либо сам делитель.

Следует отметить, что большинство калькуляторов, реализованных на ЭВМ (в том числе и КСа1с), позволяют осуществлять работу в системах счисления с основаниями 2,8, 16 и, конечно, 10.

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:
0 – это ноль
1 – это один (и это предел разряда)
10 – это два
11 – это три (и это снова предел)
100 – это четыре
101 – пять
110 – шесть
111 – семь и т.д.

Перевод чисел из двоичной системы счисления в десятичную

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

1476 = 1 * 10 3 + 4 * 10 2 + 7 * 10 1 + 6 * 10 0

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 - это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0

1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

10001001 2 = 137 10

Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.

Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
9 / 2 = 4 (1 остаток)
4 / 2 = 2 (0 остаток)
2 / 2 = 1 (0 остаток)
1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 0*2 1 + 1*2 0 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77

Основные понятия

Система счисления - это совокупность правил записи чисел посредством конечного набора символов (цифр).

Системы счисления бывают:

  • непозиционными (в этих системах значение цифры не зависит от ее позиции - положения в записи числа);
  • позиционными (значение цифры зависит от позиции).

Непозиционные системы счисления

Примеры: унарная, римская, древнерусская и др.

Позиционные системы счисления

Основание системы счисления - количество различных цифр, используемых в этой системе. Вес разряда - отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разряде

p i = s i ,

Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем - запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:

Перевод в десятичную систему счисления

По определению веса разряда

p i = s i ,
где i - номер разряда, а s - основание системы счисления.

Тогда, обозначив цифры числа как a i , любое число, записанное в позиционной системе счисления, можем представить в виде:

x = a n s n + a n-1 s n-1 + ... + a 2 s 2 + a 1 s 1 + a 0 s 0 + a -1 s -1 + ...

Например, для системы счисления с основанием 4:

1302.2 4 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 + 2⋅4 -1

Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:

1302.2 4 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 + 2⋅4 -1 =
= 1⋅64 + 3⋅16 + 0⋅4 + 2⋅1 + 2⋅0,25 =
= 64 + 48 + 2 + 0,5 = 114,5

Таким образом, для перевода числа из любой системы счисления в десятичную следует:

  1. пронумеровать разряды исходного числа;
  2. записать сумму, слагаемые которой получаются как произведения очередной цифры на основание системы счисления, возведенное в степень, равную номеру разряда;
  3. выполнить вычисления и записать полученный результат (указав основание новой системы счисления - 10).

Примеры:

Перевод из десятичной системы счисления

Вспомним пример перевода из системы счисления с основанием 4 в десятичную:

1302 4 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114

Иначе это можно записать так:

114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 1302 4

Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 - это младшая цифра при записи в четверичной системе. Частное же будет равно

(1 ⋅ 4 + 3) ⋅ 4 + 0

Деление его на 4 даст остаток - следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.

В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:

  1. Выполнить последовательное деление с остатком исходного числа и каждого полученного частного на основание новой системы счисления.
  2. Записать вычисленные остатки, начиная с последнего (т.е. в обратном порядке)

Примеры:

Системы счисления с кратными основаниями

При работе с компьютерами широко применяют двоичную систему счисления (поскольку на ней основано представление информации в компьютере), а также восьмеричную и шестнадцатеричную, запись в которых более компактна и удобна для человека. С другой стороны, благодаря тому что 8 и 16 - степени 2, переход между записью в двоичной и одной из этих систем осуществляется без вычислений.

Достаточно заменить каждый разряд шестнадцатеричной записи четырьмя (16=24 ) разрядами двоичной (и наоборот) по таблице.

шестнадцатеричная -> двоичная
A 3 2 E
1010 0011 0010 1110
двоичная -> шестнадцатеричная
(00)10 1010 0111 1101
2 A 7 D

Аналогично происходит и перевод между двоичной и восьмеричной системой, только разряд восьмеричной соответствует трем разрядам двоичной (8=2 3)

восьмеричная -> двоичная
5 3 2 1
101 011 010 001
двоичная -> восьмеричная
(0)10 101 001 111 101
2 5 1 7 5

Арифметика

Арифметические операции в позиционной системе с любым основанием производятся по одним и тем же правилам: сложение, вычитарние и умножение «в столбик», а деление - «уголком». Рассмотрим пример выполнения действий сложения и вычитания в двоичной, восьмеричной и шестнадцатеричной системах счисления.

Сложение

Двоичная система:

(перенос)
1 0 0 1 1 0 1 1
1 0 0 1 1 1 0

1 1 1 0 1 0 0 1
7 6 5 4 3 2 1 0 (номера разрядов)

В нулевом разряде: 1 + 0 = 0

В первом разряде: 1 + 1 = 2. 2 переносится в старший (2-й) разряд, обращаясь в единицу переноса. В первом разряде остается 2 - 2 = 0.

Во втором разряде: 0 + 1 + 1 (перенос) = 2; Переносим в старший разряд,

Продолжая вычисления, получим:

10011011 2 + 1001110 2 = 11101001 2

Восьмеричная система:


(перенос)
3 4 2 6 1

4 4 3 5

4 0 7 1 6
4 3 2 1 0 (номера разрядов)

Выполняем вычисления аналогично двоичной системе, но в старший разряд переносим 8. Получаем:

34261 8 + 4435 8 = 40716 8

Шестнадцатеричная система:



(перенос)

A 3 9 1

8 5 3 4

1 2 8 C 5
4 3 2 1 0 (номера разрядов)

A391 16 + 8534 16 = 128C5 16

Вычитание

Двоичная система:



(перенос)
1 0 0 1 1 0 1 1
1 0 0 1 1 1 0


1 0 0 1 1 0 1
7 6 5 4 3 2 1 0 (номера разрядов)

волов (разрядов). Такой подход используется при передаче, хранении и обработке информации и обычно не связан со смысловым содержанием информации.

1.5.2. Вероятностный подход

В теории информации, информация определяется как снятая неопределенность. Здесь учитывается ценность информации для получателя. Количество информации определяется тем, насколько уменьшится мера неопределенности (энтропия) после получения сообщения или наступления события.

За единицу количества информации (бит) принимается такое количество информации, которое содержит сообщение, уменьшающее информационную неопределенность в 2 раза. В общем случае, количество информации (Н ) содержащееся в сообщении о том, что произошло одно из N равновероятных событий, определяется так:

Группа из 8 битов называется байтом. Если бит - минимальная единица информации, то байт - основная. Существую производные единицы информации:

1 байт = 8 бит;

1 килобайт = 210 байт = 1024 байт;

1 Мегабайт = 220 байт = 1024 килобайт;

1 Гигабайт = 230 байт = 1024 Мегабайт;

1 Терабайт = 240 байт = 1024 Гигабайт.

1.6. Системы счисления, используемые в информатике

Система счисления - это совокупность приемов и правил записи чисел с помощью цифр. Различают непозиционные и позиционные системы счисления.

В непозиционной системе счисления каждый символ имеет свое определенное значение, которое не зависит от положения символа в записи числа. Например, в римской системе счисления

I - 1, V - 5, X - 10, L - 50, C - 100, D - 500, M - 1000. Число 77 записывается LXXVII.

В позиционной системе счисления значение любой цифры в изображении числа зависит от ее положения (позиции) в ряду цифр, изображающих данное число. Например: 77 - 7 единиц и 7 десятков.

Каждая позиционная система счисления имеет строго определенное количество символов (цифр) для обозначения любого числа:

– двоичная - 2: 0 и 1;

десятичная - 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Количество цифр, используемых в позиционной системе счисления для записи чисел, называется основанием системы счисления. Основанием системы счисления может быть любое натуральное число.

Пусть q - основание системы, тогда любое число в системе счисления с основанием q можно представить в виде:

А q = a n q n + a n –1 q n –1 + ... + a 1 q 1 + a 0 q 0 + a –1 q –1 + a –2 q –2 + ... + a –k q–k , (3) где А q - число, записанное в системе счисления с основанием q ,

n + 1 - количество разрядов целой части числа,

а i - цифры числа, причем 0 ≤ а i < q ,

k - количество разрядов в дробной части числа.

В информатике используются только позиционные системы счисления: десятичная, двоичная, восьмеричная, шестнадцатеричная.

1.6.1. Правила перевода чисел из одной системы счисления в другую

Правило 1 . Для перевода целого десятичного числа А в систему счисления с основанием q необходимо число А делить на основание q до получения целого остатка, меньшего q . Полученное частное следует снова делить на q до получения целого остатка, меньшего q , и т.д. до тех пор, пока последнее частное не будет меньше q . Тогда десятичное число А в системе счисления с основанием q следует записать в виде последовательности остатков деления в порядке, обратном их получению, причем старший разряд дает последнее частное.

Правило 2 . Для перевода десятичной дроби в систему счисления с основанием q следует умножить это число на основание q . Целая часть произведения будет первой цифрой числа в системе счисления с основанием q . Затем, отбросив целую часть, снова умножить на основание q и т.д. до тех пор, пока не будет получено требуемое число разрядов в новой системе счисления или пока перевод не закончится.

Правило 3 . Смешанные числа десятичной системы счисления переводятся в два приема: отдельно целая часть по своему правилу и отдельно дробная часть по своему правилу. Затем записывается общий результат, у которого дробная часть отделяется запятой.

Правило 4 . Для перевода числа из системы счисления с основанием q в десятичную систему счисления следует использовать форму записи числа в виде (3).

Правило 5 . Для перевода целого числа из двоичной системы счисления в восьмеричную систему необходимо последовательность двоичных цифр раз-