Основные поверхности пространства и их построение.

Эллипсоидом называется поверхность, уравнение которой в некоторой прямоугольной декартовой системе координат Oxyz имеет вид где а ^ b ^ с > 0. Для того, чтобы выяснить, как выглядит эллипсоид, поступим следующим образом. Возьмем на плоскости Oxz эллипс и будем вращать его вокруг оси Oz (рис. 46). Рис.46 Полученная поверхность Эллипсоид. Гиперболоиды. Параболоиды. Цилиндры и конус второго порядка. - эллипсоид вращения - уже дает представление о том, как устроен эллипсоид общего вида. Чтобы получитьего уравнение, достаточ но равномсрносжать эллипсоид вращения.вдоль оси Оу с коэффициентом J ^ !,т.с. заменить в его уравнении у на Jt/5). 10.2. Гиперболоиды Вращая гиперболу fl i! = а2 с2 1 вокруг оси Oz (рис. 47), получим поверхность, называемую однополостным гиперболоидом вращения. Его уравнение имеет вид *2 + у; получается тем же способом, что и в случае эллипсоида вращения. 5) Эллипсоид врашения можно получить равномерным сжатием сферы +yJ + *J = л" вдоль оси Oz с коэффициентом ~ ^ 1. Путем равномерного сжатия этой поверхности вдоль оси Оу с коэффициентом 2 ^ 1 получим однополостный гиперболоид общего вида. Его уравнение Эллипсоид. Гиперболоиды. Параболоиды. Цилиндры и конус второго порядка. получается тем же способом, что и в разобранном выше случае эллипсоида. Путем вращения вокруг оси Ог сопряженной гиперболы получим двуполостный гиперболоид вращения (рис. 48). Его уравнение а2 С2 Путем равномерного сжатия этой поверхности вдоль оси Оу с коэффициентом 2 ^ 1 приходим к двуполостному гиперболоиду общего вида. Заменой у на -у получаем его уравнение Врашая параболу вокруг оси Oz (рис.49), получаем параболоид вращения. Его уравнение имеет вид х2 + у2 = 2 pz. Путем сжатия параболоида врашения вдоль оси Оу с коэффициентом yj* ^ 1 получаем эллиптический параболоид. Его уравнение получается из уравнения параболоида врашения путем замены Если, то получаем параболоид вида, указанного на рис. 50. 10.4. Гиперболический параболоид Гиперболическим параболоидом называется поверхность, уравнение которой в некоторой прямоугольной декартовой системе координат Oxyz имеет вид где р > 0, q > 0. Вид этой поверхности определим, применив так называемый метод сечений, который заключается в следующем: параллельно координатным плоскостям проводятся плоскости, пересекающие исследуемую поверхность, и по изменению конфигурации возникающих в результате плоских кривых делается вывод о структуре самой поверхности. Начнем с сечений плоскостями z = h = const, параллельными координатной плоскости Оху. При h > 0 получаем гиперболы при h - сопряженные гиперболы а при - пару псрссскаюшихся прямых Заметим, что эти прямые являются асимптотами для всех гипербол (т. е. при любом h Ф 0). Спроектируем получаемые кривые на плоскость Оху. Получим следующую картину (рис. 51). Уже это рассмотрение позволяет сделать заключение о седлообразном строении рассматриваемой поверхности (рис. 52). Рис.51 Рис.52 Рассмотрим теперь сечения плоскостями Заменяя в уравнении поверхности у на Л, получаем уравнения парабол (рис.53). Аналогичная картина возникает при рассечении заданной поверхности плоскостями В этом случае также получаются параболы ветви которых направлены вниз (а не вверх, как для сечения плоскостями у = h) (рис. 54). Замечание. Методом сечений можно разобраться в строении и всех ранее рассмотренных поверхностей второго порядка. Однако путем вращения кривых второго порядка н последующего равномерного сжатия к пониманию их структуры можно прийти проще и значительно быстрее. Оставшиеся поверхности второго порядка по существу уже рассмотрены ранее. Это цилиндры: эллиптинескии гиперболический Рис. 56 и параболический и конус второго порядка представление о котором можно получить либо путем вращения пары пересекающихся прямых вокруг оси Oz и последующего сжатия, либо методом сечений. Конечно, в обоих случаях получим, что исследуемая поверхность имеет вид, указанный на рис. 59. а) вычислите координаты фокусов; , . б) вычислите эксцентриситет; . в) напишите уравнения асимптот и директрис; г) напишите уравнение сопряженной гиперболы и вычислите ее эксцентриситет. 2. Составьте каноническое уравнение параболы, если расстояние от фокуса до вершины равно 3. 3. Напишите уравнение касательной к эллипсу ^ + = 1 вето точке М(4, 3). 4. Определите вид и расположение кривой, заданной уравнением: Ответы эллипс, большая ось параллельна Эллипсоид. Гиперболоиды. Параболоиды. Цилиндры и конус второго порядка. оси Ох; б) гипербола центр О (-1,2), угловой коэффициент вешественной оси Х равен 3; в) парабола У2 = , вершина (3, 2), вектор оси, направленный в сторону вогнутости параболы, равен {-2, -1}; г) гипербола с центром, асимптоты параллельны осям координат; д) пара пересекающихся прямых е) пара параллельных прямых

Высота параболоида может быть определена по формуле

Объем параболоида, касающегося дна равен половине объема цилиндра с радиусом основания R и высотой Н, такой же объем занимает пространство W’ под параболоидом (рис.4.5а)

Рис.4.5. Соотношение объемов в параболоиде, касающемся дна.

Wп- объем параболоида,W’ – объем под параболоидом, Hп – высота параболоида

Рис.4.6. Соотношение объемов в параболоиде, касающемся краев цилиндра Hп – высота параболоида., R – радиус сосуда, Wж–объем под высотой жидкости в сосуде до начала вращения, z 0 – положение вершины параболоида, Н - высота жидкости в сосуде до начала вращения.

На рис.4.6а уровень жидкости в цилиндре до начала вращения Н. Объем жидкости Wж до и после вращения сохраняется и равен сумме объема Wц цилиндра с высотой z 0 плюс объем жидкости под параболоидом, который равен объему параболоидаWп с высотой Нп

Если параболоид касается верхнего края цилиндра, высота жидкости в цилиндре до начала вращения Н делит высоту параболоида Нп на две равные части, нижняя точка (вершина) параболоида расположена по отношению к основанию(рис.4.6в)

Кроме того, высота Н делит параболоид на две части (рис.4.6в), объемы которых равны W 2 =W 1 . Из равенства объемов параболического кольца W 2 и параболической чашки W 1 , рис.4.6в

При пересечении поверхностью параболоида днища сосуда (рис.4.7) W 1 =W 2 =0,5W кольца

Рис.4.7 Объемы и высоты при пересечении поверхностью параболоида днища цилиндра

Высоты на рис.4.6

объемы на рис.4.6 .

Расположение свободной поверхности в сосуде

Рис.4.8. Три случая относительного покоя при вращении

1. Если сосуд открыт, Po=Ратм (рис.4.8а). Вершина параболоида при вращении опускается ниже начального уровня-Н, а края поднимаются над начальным уровнем, положение вершины

2. Если сосуд заполнен полностью, прикрыт крышкой, не имеет свободной поверхности, находится под избыточным давлением Ро>Ратм, до вращения поверхность (П.П.), на которой Ро=Ратм будет находиться над уровнем крышки на высоте h 0и =М/ρg , H 1 =Н+ М/ρg.

3. Если сосуд заполнен полностью, находится под вакуумом Ро<Ратм, до вращения поверхность П.П., на которой Ро=Ратм будет находиться под уровнем крышки на высоте h 0и =-V/ρg, Н 2 =Н-V/ρg ,

4.7. Вращение с большой угловой скоростью (рис.4.9)

При вращении сосуда с жидкостью с большой угловой скоростью силой тяжести можно пренебречь по сравнению с центробежными силами. Закон изменения давления в жидкости можно получить из формулы




(4.22),

Поверхности уровня образуют цилиндры с общей осью, вокруг которой вращается сосуд. Если сосуд перед началом вращения не полностью заполнен, давление Р 0 будет действовать по радиусу r = r 0 , вместо выражения (4.22) будем иметь

в котором принимаем g(z 0 - z) = 0,

Рис. 4.9 Расположение поверхностей вращения при отсутствии силы тяжести.

Радиус внутренней поверхности при известных H и h

Эллиптический параболоид

Эллиптический параболоид при a=b=1

Эллипти́ческий параболо́ид - поверхность, описываемая функцией вида

,

где a и b одного знака. Поверхность описывается семейством параллельных парабол с ветвями, направленными вверх, вершины которых описывают параболу, с ветвями, также направленными вверх.

Если a = b то эллиптический параболоид представляет собой поверхность вращения , образованную вращением параболы вокруг вертикальной оси, проходящей через вершину данной параболы.

Гиперболический параболоид

Гиперболический параболоид при a=b=1

Гиперболи́ческий параболо́ид (называемый в строительстве «гипар») - седлообразная поверхность, описываемая в прямоугольной системе координат уравнением вида

.

Из второго представления видно, что гиперболический параболоид является линейчатой поверхностью .

Поверхность может быть образована движением параболы, ветви которой направлены вниз, по параболе, ветви которой направлены вверх, при условии, что первая парабола соприкасается со второй своей вершиной.

Параболоиды в мире

В технике

В искусстве

В литературе

Устройство, описанное в Гиперболоид инженера Гарина должно было быть параболоидом .


Wikimedia Foundation . 2010 .

  • Элон Менахем
  • Элтанг

Смотреть что такое "Эллиптический параболоид" в других словарях:

    ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД Большой Энциклопедический словарь

    эллиптический параболоид - один из двух типов параболоидов. * * * ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД, один из двух типов параболоидов (см. ПАРАБОЛОИДЫ) … Энциклопедический словарь

    Эллиптический параболоид - один из двух видов параболоидов (См. Параболоиды) … Большая советская энциклопедия

    ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД - незамкнутая поверхность второго порядка. Канонич. уравнение Э. п. имеет вид Э. п. расположен по одну сторону от плоскости Оху (см. рис.). Сечения Э. п. плоскостями, параллельными плоскости Оху, являются эллипсами с равным эксцентриситетом (если р … Математическая энциклопедия

    ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД - один из двух типов параболоидов … Естествознание. Энциклопедический словарь

    ПАРАБОЛОИД - (греч., от parabole парабола, и eidos сходство). Тело, образуемое вращающеюся параболой. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ПАРАБОЛОИД геометрическое тело, образовавшееся от вращения параболы, так… … Словарь иностранных слов русского языка

    ПАРАБОЛОИД - ПАРАБОЛОИД, параболоида, муж. (см. парабола) (мат.). Поверхность второго порядка, не имеющая центра. Параболоид вращения (образуется вращением параболы вокруг ее оси). Эллиптический параболоид. Гиперболический параболоид. Толковый словарь Ушакова … Толковый словарь Ушакова

    ПАРАБОЛОИД - ПАРАБОЛОИД, поверхность, получаемая при движении параболы, вершина которой скользит по другой, неподвижной параболе (с осью симметрии, параллельной оси движущейся параболы), тогда как ее плоскость, смещаясь параллельно самой себе, остается… … Современная энциклопедия

    Параболоид - ― тип поверхности второго порядка. Параболоид может быть охарактеризован как незамкнутая нецентральная (то есть не имеющая центра симметрии) поверхность второго порядка. Канонические уравнения параболоида в декартовых координатах: если и одного… … Википедия

    ПАРАБОЛОИД - незамкнутая нецентральная поверхность второго порядка. Канонич. уравнения П.: эллиптический параболоид (при р = q называется П. вращения) и гиперболический параболоид. А. Б. Иванов … Математическая энциклопедия

Он представляет собой полое изометрическое тело, сечениями которого являются эллипсы и параболы. Эллиптический параболоид задается вида:
x^2/a^2+y^2/b^2=2z
Все главные сечения параболоида являются параболами. При сечении плоскости XOZ и YOZ получаются только параболы. Если провести перпендикулярное сечение относительно плоскости Xoy, можно получить эллипс. Причем, сечения, представляющие собой параболы, задаются уравнениями вида:
x^2/a^2=2z; y^2/a^2=2z
Сечения эллипса задаются другими уравнениями:
x^2 /a^2+y^2/b^2=2h
Эллиптический параболоид при a=b превращается в параболоид вращения. Построение параболоида имеет ряд некоторых особенностей которые нужно учитывать. Операцию начните с подготовки - чертежа графика функции.

Для того чтобы начать строить параболоид, нужно вначале построить параболу. Начертите параболу в плоскости Oxz, как показано на рисунке. Задайте будущему параболоиду определенную высоту. Для этого проведите прямую таким образом, чтобы она касалась верхних точек параболы и была параллельно оси Ox. Затем начертите параболу в плоскости Yoz и проведите прямую. Вы получите две параболоидные плоскости, перпендикулярные друг другу. После этого в плоскости Xoy постройте параллелограмм, который поможет начертить эллипс. В этот параллелограмм впишите эллипс таким образом, чтобы он касался всех его сторон. После этих преобразований сотрите параллелограмм, и останется объемное изображение параболоида.

Существует также гиперболический параболоид, который имеет более вогнутую форму, чем эллиптический. Его сечения также имеют выд параболы, а в некоторых случаях - . Главные сечения по Oxz и Oyz, как и у эллиптического параболоида, представляют собой параболы. Они задаются уравнениями вида:
x^2/a^2=2z; y^2/a^2=-2z
Если провести сечение относительно оси Oxy, можно получить гиперболу. При построении гиперболического параболоида руководствуйтесь следующим уравнением:
x^2/a^2-y^2/b^2=2z - гиперболического параболоида

Первоначально постройте неподвижную параболу в плоскости Oxz. В плоскости Oyz начертите подвижную параболу. После этого задайте высоту параболоида h. Для этого отметьте на неподвижной две точки, которые будут вершинами еще двух подвижных . Затем изобразите еще одну систему координат O"x"y", чтобы нанести гиперболы. Центр этой системы координат должен совпадать с высотой параболоида. После всех построений изобразите те две подвижные параболы, о которых упоминалось выше, так чтобы они касались крайних точек гипербол. В результате получится гиперболический параболоид.

В процессе изучения математики, многие школьники и студенты сталкиваются с построением различных графиков, в частности, парабол. Параболы являются одними из самых часто встречающихся графиков, используемых на многих контрольных, проверочных и тестовых работах. Поэтому знание простейших инструкций по их построению окажет вам значительную помощь.

Вам понадобится

  • - линейка и карандаш;
  • - калькулятор.

Инструкция

Для начала, начертите на листе координатные оси: ось абсцисс и ось ординат. Подпишите их. После этого, поработайте над данной квадратичной функцией. Она должна быть такого вида: y=ax^2+bx+c. Самой популярной функцией является y=x^2, поэтому ее можно привести в качестве примера.

После построения осей, найдите координаты вершины вашей параболы. Чтобы найти координату по оси X, подставьте известные данные в эту формулу: x=-b/2a, по оси Y - подставьте полученное в функцию. В случае с функцией y=x^2, координаты вершины совпадают с координат, т.е. в точке (0;0), так как значение переменной b равно 0, следовательно и x=0. Подставив значение x в функцию y=x^2, нетрудно найти ее значение - y=0.

После нахождения вершины, определитесь с направлением ветвей параболы. Если коэффициент a из записи функции вида y=ax^2+bx+c положителен, то направлены вверх, если отрицателен - вниз. График функции y=x^2 направлен вверх, так как коэффицент a равен единице.

Следующим шагом будет вычисление координат точек параболы. Чтобы их найти, подставьте в значение аргумента -либо число и вычислите значение функции. Для построения графика хватит 2-3 точек. Для большего удобства и наглядности, начертите таблицу со значениями функции и аргумента. Также не забывайте, что парабола обладает симметричностью, следовательно это облегчает создания графика. Самые часто используемые точки параболы y=x^2 - (1;1), (-1;1) и (2;4), (-2;4).

После нанесения точек на координатную плоскость, соедините их плавной линией, придавая ей округлые . Не заканчивайте график в верхних точках, а продлите его, так как парабола бесконечна. Не забудьте подписать график на , а также напишите необходимые координаты на осях, в противном случае, это вам могут за ошибку и снять определенное количество баллов.

Источники:

  • как нарисовать параболу

Парабола является графиком квадратичной функции вида y=A·x²+B·x+C. Перед построением графика необходимо провести аналитическое исследование функции. Обычно параболу рисуют в декартовой прямоугольной системе координат, которая представлена двумя перпендикулярными осями Ox и Oy.

Инструкция

Первым пунктом запишите область определения функции D(y). Парабола определена на всей числовой прямой, если не задано никаких дополнительных условий. Обычно это указывается записью D(y)=R , где R – множество всех

Эллиптическим параболоидом

\frac{x^2}{a^2}+\frac{y^2}{b^2}=2\cdot z.

Гиперболическим параболоидом называется поверхность, определяемая в некоторой прямоугольной системе координат Oxyz каноническим уравнением

\frac{x^2}{a^2}-\frac{y^2}{b^2}=2\cdot z.

В уравнениях (4.51) и (4.52) a и b - положительные параметры, характеризующие параболоиды, причем для эллиптического параболоида a\geqslant b .

Начало координат называют вершиной каждого из параболоидов ((4.50) или (4.51)).

Плоские сечения эллиптического параболоида

Плоскость Oxz пересекает эллиптический параболоид (4.51) по линии, имеющей в этой плоскости уравнение \frac{x^2}{a^2}=2z , которое равносильно уравнению x^2=2pz параболы с фокальным параметром p=a^2 . Сечение параболоида плоскостью Oyz получаем, подставляя x=0 в уравнение (4.51): \frac{y^2}{b^2}=2z . Это уравнение равносильно уравнению y^2=2qz параболы с фокальным параметром q=b^2 . Эти сечения называются главными параболами эллиптического параболоида (4.51).

Рассмотрим теперь сечение эллиптического параболоида плоскостями, параллельными плоскости Oxy . Подставляя z=h , где h - произвольная постоянная (параметр), в уравнение (4.51), получаем

\frac{x^2}{a^2}+\frac{y^2}{b^2}=2\cdot h.

При h<0 уравнение не имеет действительных решений, т.е. плоскость z=h при h<0 не пересекает параболоид (4.51). При h=0 уравнению (4.51) удовлетворяет одна вещественная точка O - вершина параболоида. При h>0 уравнение определяет эллипс \frac{x^2}{(a")^2}+\frac{y^2}{(b")^2}=1 с полуосями a"=a\sqrt{2h}, b"=b\sqrt{2h} . Следовательно, сечение эллиптического параболоида плоскостью z=h (при h>0 ) представляет собой эллипс, центр которого лежит на оси аппликат, а вершины - на главных параболах.

Таким образом, эллиптический параболоид можно представить как поверхность, образованную эллипсами, вершины которых лежат на главных параболах (рис.4.46,а).

Параболоид вращения

Эллиптический параболоид, у которого a=b , называется параболоидом вращения . Такой параболоид является поверхностью вращения. Сечения параболоида вращения плоскостями z=h (при h>0 ), представляют собой окружности с центрами на оси аппликат (рис.4.46,б). Его можно получить, вращая вокруг оси Oz параболу y^2=2qz , где q=a^2=b^2 .

Плоские сечения гиперболического параболоида

Сечения гиперболического параболоида координатными плоскостями Oxz и Oyz представляют собой параболы (главные параболы) x^2=2pz или y^2=-2qz с параметрами p=a^2 или q=b^2 соответственно. Поскольку оси симметрии главных парабол направлены в противоположные стороны, гиперболический параболоид называют седловой поверхностью .

Рассмотрим теперь сечения гиперболического параболоида плоскостями, параллельными плоскости Oxy . Подставляя z=h , где h - произвольная постоянная (параметр), в уравнение (4.52), получаем \frac{x^2}{a^2}-\frac{y^2}{b^2}=2h При h>0 уравнение равносильно уравнению гиперболы \frac{x^2}{(a")^2}-\frac{y^2}{(b")^2}=1 полуосями a"=a\sqrt{2h}, b"=b\sqrt{2h} , то есть сечение гиперболического параболоида плоскостью z=h при h>0 представляет собой гиперболу с центром на оси аппликат, вершины которой лежат на главной параболе x^2=2pz . При h<0 получаем уравнение сопряженной гиперболы -\frac{x^2}{(a")^2}+\frac{y^2}{(b")^2}=1 с полуосями a"=a\sqrt{-2h}, b"=b\sqrt{-2h} , т.е. сечение гиперболического параболоида плоскостью z=h при h<0 представляет собой сопряженную гиперболу с центром на оси аппликат, вершины которой лежат на главной параболе y^2=-2qh . При h=0 получаем уравнение пересекающихся прямых \frac{x^2}{a^2}-\frac{y^2}{b^2}=0 , т.е. сечение гиперболического параболоида плоскостью z=0 представляет собой пару пересекающихся в начале координат прямых.

Таким образом, гиперболический параболоид можно представить как поверхность, образованную гиперболами (включая и "крест" из их асимптот), вершины которых лежат на главных параболах (рис.4.47,а).

Сечение параболоида плоскостью x=h , где h - произвольная постоянная, представляет собой параболу

\frac{h^2}{a^2}-\frac{y^2}{b^2}=2\cdot z \quad \Leftrightarrow \quad y^2=-2\cdot q\cdot\!\left(z-\frac{h^2}{2\cdot a^2}\right)\!.


равную главной параболе y^2=-2qz с параметром q=b^2 , вершина которой лежит на другой главной параболе x^2=2pz с параметром p=a^2 . Поэтому гиперболический параболоид можно представить как поверхность, получающуюся при перемещении одной главной параболы так, чтобы ее вершина "скользила" по другой главной параболе (рис.4.47,б).

Замечания 4.11.

1. Гиперболический параболоид является линейчатой поверхностью, т.е. поверхностью, образованной движением прямой (рис.4.47,в).

2. Ось аппликат канонической системы координат является осью симметрии параболоида, а координатные плоскости Oyz,~Oxz - плоскостями симметрии параболоида.

В самом деле, если точка M(x,y,z) принадлежит параболоиду (эллиптическому или гиперболическому), то точки с координатами (\pm x,\pm y,\pm z) при любом выборе знаков также принадлежат параболоиду, поскольку их координаты удовлетворяют уравнению (4.51) или (4.52) соответственно. Поэтому параболоид симметричен относительно координатных плоскостей Oyz, Oxz и координатной оси Oz .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!