История развития телеграфа кратко. Электрический телеграф (история изобретения)

История электрического телеграфа началась после того, как в 1809 г. немецкий изобретатель Т. Зёммеринг создал первый электрохимический телеграфный аппарат, а в 1828 г. русский изобретатель П. Л. Шиллинг сконструировал первый электромагнитный аппарат 270 . Однако днем рождения электрического телеграфа считается 21 октября 1832 г., когда П. Л. Шиллинг публично продемонстрировал работу своего аппарата и тем самым сделал его общим достоянием 271 . И хотя он сразу же получил признание как в нашей стране, так и за рубежом, понадобилось четыре года, чтобы правительство согласилось взять его на вооружение.

Это было время, когда в России происходило внедрение оптического телеграфа. Он был дешевле и проще. Уже существовал опыт его применения. А что может дать электрический телеграф, этого еще никто не знал. П. Л. Шиллингу потребовалось приложить немало усилий, чтобы привлечь внимание правительства к своему изобретению и получить необходимую поддержку. В результате первая в России экспериментальная линия электрического телеграфа была создана только в 1836 г. Она соединила между собой два крайних здания Адмиралтейства и действовала более года 272 .

Практическое значение этой линии было невелико. Но она наглядно показала, что электрический телеграф открывает совершенно новые возможности для передачи информации. Поэтому 19 мая 1837 г. Морское министерство предложило П. Л. Шиллингу связать при помощи его телеграфа Петербург и Кронштадт 273 . К сожалению, реализовать это предложение изобретатель не смог, так как 25 июля его не стало. Он неожиданно умер, хотя было ему всего 50 лет 274 .

Так получилось, что подхватить выпавшее из рук П. Л. Шиллинга знамя оказалось некому. Только через два года опыты, связанные с электрической телеграфией, продолжил Борис Семенович Якоби (1801–1874) 275 . И только еще через два года он получил предложение соединить телеграфом Зимний дворец с Главным штабом 276 . Если учесть расстояние между двумя этими зданиями, нетрудно понять, что решение названной задачи тоже имело скорее экспериментальный, чем практический характер.

На пути решения этой задачи пришлось столкнуться с множеством проблем: это касалось совершенствования телеграфного аппарата и генератора электрического тока, выбора металла для изготовления кабеля и материала для его изоляции. В решении этих и некоторых других проблем Б. С. Якоби во многом пришлось быть первооткрывателем.

Распоряжение соединить электрическим телеграфом Зимний дворец и Главный штаб было отдано 13 октября 1841 г. В следующем году телеграфная линия связала Зимний дворец с Главным управлением путей сообщения 277 , а затем Главное управление путей сообщения и Царское Село 278 . Последняя линия была сдана 14 октября 1843 г. 279 Первая из этих трех линий составляла 364 м, вторая – 2,7 км, третья – 25 км 280 .


Таким образом, от демонстрации первого электромагнитного телеграфа до начала его практического использования в России прошло почти десять лет. За это время электрический телеграф появился во всех ведущих странах мира. Началось совершенствование этого нового вида связи 281 .

Первоначально телеграфное дело в России находилось в ведении Военного министерства. Затем его передали в Министерство путей сообщения 282 , которое тогда возглавлял граф П. А. Клейнмихель 283 .

Важным этапом в развитии телеграфной связи стало строительство железной дороги Петербург–Москва, которая первоначально называлась Петербургско-Московской, затем Николаевской, потом Октябрьской 284 . Строить ее начали в 1843 г., открыли 18 августа 1851 г. 285 .

Уже в 1844 г. появился проект соединения Петербурга и Москвы телеграфной линией, которую планировалось провести вдоль железной дороги 286 . И вскоре после сдачи ее в эксплуатацию телеграфная линия Петербург–Москва вступила в строй 287 . Для ее обслуживания была создана специальная «телеграфическая рота» 288 .

Тогда же развернулось строительство первой подводной телеграфной линии, которая в 1853 г. связала Кронштадт и Петербург 289 .

В 1854 г. электрический телеграф соединил Санкт-Петербург с Варшавой 290 , а Москву через Киев, Кременчуг, Николаев – с Одессой 291 . В 1854–1855 гг. начали действовать телеграфные линии Петербург–Ревель, Петербург–Выборг–Гельсингфорс, Петербург–Динабург–Рига, Варшава–Мариам-поль (Германия), Варшава–Эйдкунен (Австрия) 292 . К концу царствования Николая I протяженность телеграфных линий в России достигла 2 тыс. км 293 .

Стремясь создать нормативную базу для развития новой отрасли связи, 14 октября 1854 г. император утвердил «Положение об управлении телеграфическими линиями» 294 , а в 1855 г. – «Положение о приеме и передаче телеграфических депеш по электромагнитному телеграфу» 295 .

Первоначально телеграф использовался только для государственных целей. В 1854 г. он был открыт для коммерческих надобностей 296 , через год частные телеграммы составили 62% всех отправленных телеграмм 297 . В таких условиях в 1857 г. был разрешен прием любой частной корреспонденции 298 .

10 апреля 1858 г. для управления новым видом связи было создано специальное учреждение – Департамент телеграфов 299 . Первым его директором стал полковник Людвиг Иванович Гергард 300 . В 1866 г. его сменил Карл Карлович Людерс (1815–1882), занимавший этот пост до 1882 г. 301

Интенсивное телеграфное строительство продолжалось и после смерти Николая I. Если к концу его царствования протяженность телеграфных линий составляла 2 тыс. верст, то к 1 января 1857 г. она достигла 7 тыс. верст 302 , в 1858 г. – 10 тыс. 303 , в 1863 г. – 26 тыс. 304

Конкретное представление о размещении телеграфной связи к середине 60-х годов дает специальная карта, опубликованная в 1867 г. Министерством почт и телеграфов. Как явствует из нее, к этому времени телеграфные линии соединили все губернские центры Европейской России, протянулись на юг до Тифлиса и Эривани 305 , на севере – до Архангельска, на востоке – до Иркутска, на западе – до Польши 306 .

В 1861 г. телеграф связал Казань и Тюмень, в 1862 г. – Тюмень и Омск, в 1863 г. – Омск и Иркутск, в 1869 г. вступил в строй Амурский телеграф, в 1870 г. телеграфная линия была продолжена до Хабаровска, в 1871 г. – до Владивостока 307 . Поскольку линия Казань–Владивосток составляла 8,3 тыс. верст 308 , а линия Петербург–Москва–Казань – 1,3 тыс. верст, общая протяженность этой телеграфной линии превысила 9,5 тыс. верст. В последующем от этой магистрали протянулись местные линии на север и на юг. Одна из них в 1881 г. связала с материком Сахалин 309 . В начале ХХ в. развернулось строительство телеграфной линии на Камчатке, правда, до 1917 г. соединить ее телеграфом с Дальним Востоком не удалось 310 .

В конце 1870 г. началось создание туркестанской ветки телеграфной связи 311 . В 1870–1871 гг. телеграф связал Омск с Семипалатинском и г. Верным (позднее – Алма-Ата), в 1873 г. – Верный с Ташкентом, в 1875 г. – Ташкент с Ходжентом, в 1876 г. к этой системе были подключены Коканд и Самарканд 312 . В 1879 г. телеграфный кабель, проложенный по дну Каспийского моря, соединил между собой Красноводск и Баку, т. е. Среднюю Азию и Закавказье 313 .

Если первоначально строительство телеграфных линий вызывалось главным образом военно-государственными интересами, с конца 60-х годов постепенно включается такой фактор, как развитие предпринимательства. Прежде всего это касается железнодорожного строительства. Уже в 1857 г. правительство разрешило создание телеграфных линий на частных железных дорогах, а в 1862 г. утвердило «Положение о телеграфах частных железных дорог» 314 .

Являясь собственником бόльшей части телеграфных линий, государство в то же время осуществляло контроль за телеграфом частных железных дорог и других частных обществ 315 .

Общее представление о развитии телеграфной связи в пореформенной России дает табл. 14.

Таблица 14

Развитие телеграфной сети в 1858–1913 гг.

Появление телеграфов стало прорывом в развитии технологий. С его помощью удавалось передавать различные сигналы и сообщения. В каком году изобрели телеграф? Кто является его автором? Узнайте об этом в статье.

Истоки

Человек как существо социальное, всегда нуждался в общении с себе подобными. Ещё в древние времена, с момента объединения людей в небольшие группы, возникала необходимость в создании сигнальной системы. Она передавала сообщение, предупреждая об опасности.

Так, одним из самых старых способов передачи сигнала является звук. О приближении врагов предупреждали, имитируя звуки живой природы, например, щебетание птиц, крики совы. Звуки издавались и при помощи рога или музыкальных инструментов. Ещё одно действенное средство передать сигнал - это огонь. Он и в наше время может пригодиться, заблудившимся в глухих лесах туристам.

По мере развития общества, требовался более эффективный и новаторский способ передачи сигналов. И он появился. Дальше, попытаемся разобраться, кто изобрел телеграф. Понятие телеграф означает средство передачи сигнала по каналам связи. Такими каналами могут быть радиоволны или провода. Название термина сложилось из слов древнегреческого языка - tele и grapho, что переводится как «далеко» и «пишу». Термины «телефон» и «телекс» имеют схожее происхождение.

Кто первым изобрел телеграф?

Первый телеграф был оптический. Точно не известно, кто изобрел телеграф. Печатные статьи об этом механизме начали появляться довольно рано. Но в числе тех кто, изобрел телеграф, непременно находится английский ученый Гук. Свой прибор он продемонстрировал ещё в 1684 году. В основе механизма находились подвижные линейки и круги, которые были видны с больших расстояний.

В качестве оптического телеграфа использовался гелиограф. Впервые его установили в 1778 году между обсерваториями Гринвича и Парижа. Обычно гелиограф располагался на треноге, а внутри него находилось небольшое зеркало. Сигнал передавался при помощи вспышек света, которые получали при наклоне прибора. Автора этого прибора сложно назвать, однако изобретение пользовалось популярностью среди военных даже в XIX веке.

Семафор

В 1792 году француз Клод Шапп изобрел напоминающий механизм гелиографа. Сигнал передавался благодаря свету, который излучал семафор. Несколько одинаковых высоких строений размещались в пределах видимости друг друга. На них находились семафоры и люди, управляющие ними.

Уже в 1794 году на пути из Парижа в Лиль были установлены 22 станции с семафорами. На передачу одного сигнала уходило примерно 2 минуты. Такая система передачи сигналов стала весьма популярной. Вскоре были построены и другие станции. Сигнал передавался намного точнее, чем у маяка и дымового сигнала.

Шапп изобрел специальную систему кодов. На семафоре горизонтально располагались планки. Раздвигаясь или соединяясь, они образовывали определенную фигуру, каждой из которой соответствовала буква алфавита. За одну минуту можно было передать два слова.

Электрический телеграф

В конце XVIII века исследователи и изобретатели изучают свойства электричества. Появляется идея применить его и к телеграфу. В 1774 году Георг Лесаж создает первый электростатический телеграф. Позже Самуил Земмеринг изобретает электрохимический механизм, с пузырьками газа внутри.

В 1832 году Павел Шиллинг становится тем, кто изобрел электромагнитный телеграф. На шелковых нитях подвешивались пять магнитных стрелок, которые двигались внутри катушек, обвитых проволокой. Направление тока определяло сторону, в которую двигалась магнитная стрелка. Передавать можно было как буквы, так и цифры.

Сразу за Шиллингом последовал ряд идентичных изобретений от немцев Гаусса и Вебера, англичан Кука и Уотсона. Но патент на электромагнитный телеграф достался Сэмюэлю Морзе, так как он был не стрелочного, а механического типа. Позже изобретатель придумал известный во всем мире сигнальный код - азбуку Морзе.

Фототелеграф

Физик из Шотландии продвинулся сразу на несколько шагов вперед. Александр Бейн был первым, кто изобрел телеграф, способный передавать изображения. Прибор появился в 1843 году и получил название «фототелеграф». Он по праву считается прародителем факса.

Итальянец Казелли создает схожий с изобретением Бейна аппарат и начинает массовое производство. Специальный лак передавал изображение или чертеж на свинцовую фольгу. Машина считывала элементы и передавала их на бумаге электрохимическим способом. Поздние модели фототелеграфов использовались даже для производства географических карт.

Беспроводной телеграф

В 1895 году в России был продемонстрирован абсолютно новый тип телеграфов, названный «грозоотметчиком». Кто изобрел беспроволочный телеграф? Автором изобретения был известный ученый Основной задачей механизма было регистрировать радиоволны, которые производит грозовой фронт.

По сути, это был первый в мире радиоприемник. Усовершенствовав модель первого «грозоотметчика», удалось достичь того, что сигнал, зашифрованный азбукой Морзе, передавался прямо в наушники к принимающей стороне. Прибор Попова успешно использовался для осуществления связи между кораблями и берегом. Он нашел широкое применение в военном деле.

Новая эра

Новый этап в развитии телеграфов наступил в 1872 году, после изобретения Жаном Бодо стартстопного телеграфа. Благодаря ему, стало возможным передавать сразу несколько сообщений в одну сторону.

В 1930 году аппарат Бодо дополнили номеронабирателями на дисках. Они были похожи на привычные нам диски для набора номера на старых телефонах. Теперь можно было указывать абонента, которому предназначалось сообщение. Такой прибор получил название «телекс». Во многих странах мира начали создавать национальные абонентские системы для телеграфирования. Такие сети появились, например, в Германии, Великобритании, США.

В настоящее время телеграфная связь все ещё существует. Но, конечно же, инновационные технологии давно вытеснили её на место «ретросистем».

В 1832 году русский ученый Павел Львович Шиллинг изобрёл телеграф, который был удачно испытан в Петербурге. Шиллингу также удалось создать подводный кабель с каучуковой изоляцией и воздушную подводку на проводах.

Вернер фон Сименс (1816-1892) – немецкий физик, электротехник и предприниматель. Родился в Ленте близ Ганновера. Вскоре после окончания Берлинского артиллерийского училища оставил военную карьеру и занялся изобретательской деятельностью.

В. Сименс с братом Карлом улучшили конструкцию электромагнитного телеграфа, и савместно с механиком И. Гальске братья сконструировали электрический телеграф. В 1847 году в Пруссии В. Сименс получил патент на телеграф. И. Гальске усовершенствовал изготовление проводов и их изоляцию. Вернер и Карл Сименсы совместно с И. Гальске создали фирму «Сименс и Гальске», которая занималась промышленным производством средств связи. Телеграфные линии строились по всему земному шару. За небольшой период времени небольшая мастерская превратилась в крупный завод, который изготавливал телеграфные установки и различные кабели.

Сименс Эрнст Вернер серьёзно занимался электротелеграфией, точной механикой и оптикой. В 1846 году учёный изобрёл машину для наложения резиновой изоляции на провода. Эта машина вошла во всеобщее употребление при производстве изолированных проводников для подземных и подводных телеграфных кабелей. В. Сименс ввёл в обиход термин «электротехника». 17 января 1867 г. учёный изложил свою теорию динамо-машины в берлинской академии. Данная машина стала основой для всей современной электротехники.

В 1879 г. на берлинской выставке была представлена первая электрическая железная дорога и первый трамвай, построенные В. Сименсом. С этого началась активная деятельность изобретателя в развитии и распространении электрических железных дорог.

Завод, основанный В. Сименсом, дал миру множество изобретений и усовершенствовании по части телеграфного дела и электротехники: в индукционных электрических машинах стальные магниты были заменены на электромагниты; был разработан электрогенератор с самовозбуждением; сконструирован электрический пирометр; сконструирована промышленная электроплавильная печь и селеновый фотометр.

В настоящее время в различных странах действуют предприятия акционерного общества «Сименс и Гальске» по производству аппаратов и принадлежностей электротехники, по электрическому освещению, по эксплуатации телефонов, телеграфов, электрических железных дорог, по передаче электроэнергии.

В честь учёного, физика и изобретателя Вернера фон Сименса названа единица измерения электрической проводимости – Сименс.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Примитивные виды связи: огонь, дым и отражённый свет

С незапамятных времен человечество пользовалось различными примитивными видами сигнализации и связи в целях передачи срочной и важной информации в тех случаях, когда по ряду причин традиционные виды почтовых сообщений не могли быть использованы. Огни, зажигаемые на возвышенных участках местности, или же дым от костров должен был оповестить о приближении врагов либо грядущем стихийном бедствии. Этот способ до сих пор используется заблудившимися в тайге или туристами, испытывающими стихийное бедствие . Некоторые племена и народы использовали для этих целей определенные комбинации звуковых сигналов от ударных музыкальных инструментов (барабанов), другие научились передавать определенные сообщения, манипулируя отраженным солнечным светом при помощи системы зеркал. В последнем случае система связи получила наименование «гелиограф ».

Оптический телеграф

В 1792 году во Франции Клод Шапп создал систему передачи информации при помощи светового сигнала, которая получила название «Оптический телеграф». В простейшем виде это была цепь типовых строений, с расположенными на кровле шестами с подвижными поперечинами, которая создавалась в пределах видимости одно от другого. Шесты с подвижными поперечинами - семафоры - управлялись при помощи тросов специальными операторами изнутри строений. Шапп создал специальную таблицу кодов, где каждой букве алфавита соответствовала определенная фигура, образуемая семафором, в зависимости от положений поперечных брусьев относительно опорного шеста. Система Шаппа позволяла передавать сообщения на скорости два слова в минуту и быстро распространилась в Европе. В Швеции цепь станций оптического телеграфа действовала до 1880 года.

Электрический телеграф

Ключ Морзе

Телеграфный коммутатор конструкции П. Кошкодаева.
Использовался на стационарных узлах Наркомата связи и штабов военных округов. В годы ВОВ широко применялся для оборудования кроссов стационарных узлов связи
Военно-исторический музей артиллерии, инженерных войск и войск связи , Санкт-Петербург

Одна из первых попыток создать средство связи с использованием электричества относится к второй половине XVIII века, когда Лесаж в 1774 году построил в Женеве электростатический телеграф. В 1798 году испанский изобретатель Франциско де Сальва создал собственную конструкцию электростатического телеграфа. Позднее, в 1809 году немецкий учёный Самуил Томас Земмеринг построил и испытал электрохимический телеграф.

Первый электромагнитный телеграф создал российский учёный Павел Львович Шиллинг в 1832 году. Публичная демонстрация работы аппарата состоялась на квартире Шиллинга 21 октября 1832 года. Павел Шиллинг также разработал оригинальный код, в котором каждой букве алфавита соответствовала определенная комбинация символов, которая могла проявляться черными и белыми кружками на телеграфном аппарате. Впоследствии электромагнитный телеграф был построен в Германии - Карлом Гауссом и Вильгельмом Вебером (1833), в Великобритании - Куком и Уитстоном (1837), а в США электромагнитный телеграф запатентован С. Морзе в . Телеграфные аппараты Шиллинга, Гаусса-Вебера, Кука-Уитстона относятся к электро-магнитным аппаратам стрелочного типа, в то время как аппарат Морзе являлся электро-механическим. Большой заслугой Морзе является изобретение телеграфного кода, где буквы алфавита были представлены комбинацией точек и тире (код Морзе). Коммерческая эксплутация электрического телеграфа впервые была начата в Лондоне в 1837. В России работы П.Л. Шиллинга продолжил Б. С. Якоби , построивший в 1839 году пишущий телеграфный аппарат, а позднее, в 1850 году, - буквопечатающий телеграфный аппарат.

Основные телеграфные линии на 1891

Фототелеграф

В 1843 году шотландский физик Александр Бэйн продемонстрировал и запатентовал собственную конструкцию электрического телеграфа, которая позволяла передавать изображения по проводам. Аппарат Бэйна считается первой примитивной факс -машиной. В 1855 году итальянский изобретатель Джованни Казелли создал аналогичное устройство, которое назвал Пантелеграф и предложил его для коммерческого использования. Аппараты Казелли некоторое время использовалиь для передачи изображений посредством электрических сигналов на телеграфных линиях как во Франции, так и в России.

Беспроводной телеграф

7 мая 1895 года российский ученый Александр Степанович Попов на заседании Русского Физико-Химического Общества продемонстрировал прибор, названный им "грозоотметчик", который был предназначен для регистрации электромагнитных волн. Этот прибор считается первым в мире аппаратом беспроводной телеграфии, радиоприемником. В 1897 году при помощи аппаратов беспроводной телеграфии Попов осуществил прием и передачу сообщений между берегом и военным судном. В 1899 году Попов сконструировал модернизированный вариант приемника электромагнитных волн, где прием сигналов (азбукой Морзе) осуществлялся на головные телефоны оператора. В 1900 году благодаря радиостанциям, построенным на острове Гогланд и на российской военно-морской базе в Котке под руководством Попова, были успешно осуществлены аварийно-спасательные работы на борту военного корабля "Генерал-адмирал Апраксин", севшего на мель у острова Гогланд. В результате обмена сообщениями, переданным методом беспроводной телеграфии, экипажу российского ледокола Ермак была своевременно и точно передана информация о финских рыбаках, находящихся на оторванной льдине в Финском заливе. За рубежом техническая мысль в области беспроводной телеграфии также не стояла на месте. В 1896 году в Великобритании итальянец Гулиельмо Маркони подал патент "об улучшениях, произведенных в аппарате беспроводной телеграфии". Аппарат, представленный Маркони, в общих чертах повторял конструкцию Попова, многократно к тому времени описанную в европейских научно-популярных журналах. В 1901 году Маркони добился устойчивой передачи сигнала беспроводного телеграфа (буквы S) через Атлантику.

Аппарат Бодо: новый этап развития телеграфии

В 1872 году французский изобретатель Жан Бодо сконструировал телеграфный аппарат многократного действия, который имел возможность передавать по одному проводу два и более сообщения в одну сторону. Аппарат Бодо и созданные по его принципу получили название стартстопных. Кроме того, Бодо создал весьма удачный телеграфный код (Код Бодо), который впоследствии был воспринят повсеместно и получил наименование Международный телеграфный код № 1 (ITA1). Модифицированная версия МТК № 1 получила название МТК № 2 (ITA2). В СССР на основе ITA2 был разработан телеграфный код МТК-2 . Дальнейшие модификации конструкции стартстопного телеграфного аппарата, предложенного Бодо, привели к созданию телепринтеров (телетайпов).В честь Бодо была названа единица скорости передачи информации - бод .

Telex

Телекс Siemens T100

К 1930 году была создана конструкция стартстопного телеграфного аппарата, оснащенного дисковым номеронабирателем телефонного типа (телетайп). Этот тип телеграфного аппарата в числе прочего позволял персонифицировать абонентов телеграфной сети и осуществлять быстрое их соединение. Практически одновременно, в Германии и Великобритании были созданы национальные сети абонентского телеграфа, получившие название Telex (TELEgraph + EXchange). Несколько позже в США также была создана национальная сеть абонентского телеграфирования, подобная Telex, которая получила наименование TWX (Telegraph Wide area eXchange). Сети международного абонентского телеграфирования постоянно расширялись и к 1970 году сеть Telex объединяла абонентов более чем 100 стран мира.Только в восьмидесятых годах благодаря появлению на рынке недорогих и практичных факсимильных машин сеть абонентского телеграфирования стала сдавать позиции в пользу факсимильной связи.

Телеграф в новом веке

В наши дни возможности обмена сообщениями по сети Telex сохранена во многом благодаря электронной почте. В России телеграфная связь существует и поныне, телеграфные сообщения передаются и принимаются при помощи специальных устройств - телеграфных модемов, сопряженных в узлах электрической связи с персональными компьютерами операторов. Тем не менее в некоторых странах национальные операторы сочли телеграф устаревшим видом связи и свернули все операции по отправлению и доставке телеграмм. В Нидерландах телеграфная связь прекратила работу в 2004 году. В январе 2006 года старейший американский национальный оператор Western Union объявил о полном прекращении обслуживания населения по отправке и доставлению телеграфных сообщений. В то же время в Канаде, Бельгии, Германии, Швеции, Японии некоторые компании все еще поддерживают сервис по отправлению и доставке традиционных телеграфных сообщений.

См. также

  • Абонентское телеграфирование

Отель, не имеющий телекса, не может иметь рейтинг "пять звезд". Сейчас в мире более полутора миллионов телексных номеров. Телекс является документальным видом связи и признается документом на основании международных соглашений 30-х годов прошлого века. В России есть сеть общего пользования, в которой каждое сообщение хранится 7 месяцев, и может быть разыскано по всему пути следования, а также может быть вам выдано с заверяющей печатью как документ.

Ссылки по теме

  • Центральный Музей Связи имени А.С. Попова: Аппарат П.Л. Шиллинга
  • История Факсимильных машин и Фототелеграфов (англ.)
  • Виртуальный музей телетайпов (англ.) - большая коллекция аппаратов и фотоэксклюзив.

Вплоть до середины XIX века единственным средством сообщения между европейским континентом и Англией, между Америкой и Европой, между Европой и колониями оставалась пароходная почта. О происшествиях и событиях в других странах люди узнавали с опозданием на целые недели, а порой и месяцы.

Например, известия из Европы в Америку доставлялись через две недели, и это был еще не самый долгий срок. Поэтому создание телеграфа отвечало самым настоятельным потребностям человечества. После того как эта техническая новинка появилась во всех концах света и земной шар опоясали телеграфные линии, требовались только , а порой и минуты на то, чтобы новость по электрическим проводам из одного полушария примчалась в другое.

Политические и биржевые сводки, личные и деловые сообщения в тот же день могли быть доставлены заинтересованным лицам. Таким образом, телеграф следует отнести к одному из важнейших изобретений в истории цивилизации, потому что вместе с ним человеческий разум одержал величайшую побед над расстоянием.

Но кроме того что телеграф открыл новую веху в истории связи, изобретение это важно еще и тем, что здесь впервые, и притом в достаточно значительных масштабах, была использована электрическая энергия. Именно создателями телеграфа впервые было доказано, что электрический ток можно заставить работать для нужд человека и, в частности, для передачи сообщений.

Изучая историю телеграфа, можно видеть, как в течение нескольких десятилетий молодая наука об электрическом токе и телеграфия шли рука об руку, так что каждое новое открытие в электричестве немедленно использовалось изобретателями для различных способов связи.

Как известно, с электрическими явлениями люди познакомились в глубокой древности. Еще Фалес, натирая кусочек янтаря шерстью, наблюдал затем, как гот притягивает к себе небольшие тела. Причина этого явления заключалась в том, что при натирании янтарю сообщался электрический заряд.

В XVII веке научились заряжать тела с помощью электростатической машины. Вскоре было установлено, что существуют два вида электрических зарядов: их стали называть отрицательными и положительными, причем заметили, что тела, имеющие одинаковый знак зарядов, отталкиваются друг от друга, а разные знаки - притягиваются.

Долгое время, исследуя свойства электрических зарядов и заряженных тел, не имели понятия об электрическом токе. Он был открыт, можно сказать, случайно болонским профессором Гальвани в 1786 году. Гальвани в течение многих лет экспериментировал с электростатической машиной, изучая ее действие на мускулатуру животных - прежде всего лягушек (Гальвани вырезал лапку лягушки вместе с частью позвоночного столба, один электрод от машины подводил к позвоночнику, а другой - к какой-нибудь мышце, при пропускании разряда мышца сокращалась и лапка дергалась).

Однажды Гальвани подвесил лягушачью лапку с помощью медного крючка к железной решетке балкона и к своему великому изумлению заметил, что лапка дернулась так, словно через нее пропустили электрический разряд. Такое сокращение происходило каждый раз, когда крючок соединялся с решеткой. Гальвани решил, что в этом опыте источником электричества является сама лапка лягушки. Не все согласились с этим объяснением.

Пизанский профессор Вольта первый догадался, что электричество возникает вследствие соединения двух разных металлов в присутствии воды, но только не чистой, а представляющей собой раствор какой-нибудь соли, кислоты или щелочи (такую электропроводящую среду стали называть электролитом). Так, например, если пластинки меди и цинка спаять между собой и погрузить в электролит, в цепи возникнут электрические явления, являющиеся следствием протекающей в электролите химической реакции. Очень важным здесь было следующее обстоятельство - если прежде ученые умели получать лишь моментальные электрические разряды, то теперь они имели дело с принципиально новым явлением - постоянным электрическим током.

Ток, в отличие от разряда, можно было наблюдать в течение длительных промежутков времени (до тех пор, пока в электролите не пройдет до конца химическая реакция), с ним можно было экспериментировать, наконец, его можно было использовать. Правда, ток, возникавший между парой пластинок, получался слабым, но Вольта научился его усиливать. В 1800 году, соединив несколько таких пар вместе, он получил первую в истории электрическую батарею, названную вольтовым столбом.

Эта батарея состояла из положенных одна на другую пластинок меди и цинка, между которыми находились кусочки войлока, смоченные раствором соли. При исследовании электрического состояния такого столба Вольта обнаружил, что на средних парах электрическое напряжение почти вовсе незаметно, но оно возрастает на более удаленных пластинах. Следовательно, напряжение в батарее было тем значительнее, чем больше число пар.

Пока полюса этого столба не были соединены между собой, в нем не обнаруживалось никакого действия, но при замыкании концов с помощью металлической проволоки в батарее начиналась химическая реакция, и в проволоке появлялся электрический ток. Создание первой электрической батареи было событием величайшей важности. С этого времени электрический ток становится предметом самого пристального изучения многих ученых. Вслед за тем появились и изобретатели, которые постарались использовать вновь открытое явление для нужд человека.

Известно, что электрический ток представляет собой упорядоченное движение заряженных частиц. Например, в металле - это движение электронов, в электролитах - положительных и отрицательных ионов и т.д. Прохождение тока через проводящую среду сопровождается рядом явлений, которые называют действиями тока. Самые важные из них - это тепловое, химическое и магнитное. Говоря об использовании электричества, мы обычно подразумеваем, что применение находит то или иное из действий тока (например, в лампе накаливания - тепловое, в электродвигателе - магнитное, при электролизе - химическое).

Поскольку изначально электрический ток был открыт как следствие химической реакции, химическое действие тока, прежде всего, обратило на себя внимание. Замечено было, что при прохождении тока через электролиты наблюдается выделение веществ, содержащихся в растворе, или пузырьков газа. При пропускании тока через воду можно было, к примеру, разложить ее на составные части - водород и кислород (эта реакция называется электролизом воды). Именно это действие тока и легло в основу первых электрических телеграфов, которые поэтому называются электрохимическими.

В 1809 году в Баварскую академию был представлен первый проект такого телеграфа. Его изобретатель Земеринг предложил использовать для средств связи пузырьки газа, выделявшиеся при прохождении тока через подкисленную воду. Телеграф Земеринга состоял из: 1) вольтова столба; 2) алфавита, в котором буквам соответствовали 24 отдельных проводка, соединявшихся с вольтовым столбом посредством проволоки, втыкавшейся в отверстия штифтов; 3) каната из 24-х свитых вместе проводков; 4) алфавита, совершенно соответствующего передающему набору и помещающегося на станции, принимающей депеши (здесь отдельные проводки проходили сквозь дно стеклянного сосуда с водой); 5) будильника, состоявшего из рычага с ложкой.

Когда Земеринг хотел телеграфировать, он сначала подавал другой станции знак с помощью будильника и для этого втыкал два полюса проводника в петли букв B и C. Ток проходил по проводнику и воде в стеклянном сосуде, разлагая ее. Пузырьки скапливались под ложечкой и поднимали ее так, что она принимала положение, обозначенное пунктиром.

В этом положении подвижный свинцовый шарик под действием собственной тяжести скатывался в воронку и по ней спускался в чашечку, вызывая действие будильника. После того как на принимающей станции все было подготовлено к приему депеши, отдающий ее соединял полюса проволоки таким образом, что электрический ток проходил последовательно через все буквы, составляющие передаваемое сообщение, причем пузырьки отделялись у соответствующих букв другой станции.

Впоследствии этот телеграф значительно упростил Швейгер, сократив количество проводов всего до двух. Швейгер ввел различные комбинации в пропускании тока. Например, различную продолжительность действия тока и, следовательно, различную продолжительность разложения воды. Но этот телеграф все еще оставался слишком сложным: наблюдать за выделением пузырьков газа было очень утомительно. Работа шла медленно. Поэтому электрохимический телеграф так и не получил практического применения.

Следующий этап в развитии телеграфии связан с открытием магнитного действия тока. В 1820 году датский физик Эрстед во время одной из лекций случайно обнаружил, что проводник с электрическим током оказывает влияние на магнитную стрелку, то есть ведет себя как магнит. Заинтересовавшись этим, Эрстед вскоре открыл, что магнит с определенной силой взаимодействует с проводником, по которому проходит электрический ток - притягивает или отталкивает его.

В том же году французский ученый Арго сделал другое важное открытие. Проволока, по которой он пропускал электрический ток, случайно оказалась погруженной в ящик с железными опилками. Опилки прилипли к проволоке, как будто это был магнит. Когда же ток отключили, опилки отпали. Исследовав это явление, Арго создал первый электромагнит - одно из важнейших электротехнических устройств, которое используется во множестве электрических приборов.

Простейший электромагнит легко приготовит каждый. Для этого надо взять брусок железа (лучше всего незакаленного «мягкого» железа) и плотно намотать на него медную изолированную проволоку (эта проволока называется обмоткой электромагнита). Если теперь присоединить концы обмотки к батарейке, брусок намагнитится и будет вести себя как хорошо всем известный постоянный магнит, то есть притягивать мелкие железные предметы. С исчезновением тока в обмотке при размыкании цепи брусок мгновенно размагнитится. Обычно электромагнит представляет собой катушку, внутрь которой вставлен железный сердечник.

Наблюдая за взаимодействием электричества и магнетизма, Швейгер в том же 1820 году изобрел гальваноскоп. Этот прибор состоял из одного витка проволоки, внутри которой помещалась в горизонтальном состоянии магнитная стрелка. Когда через проводник пропускали электрический ток, стрелка отклонялась в сторону.

В 1833 году Нервандар изобрел гальванометр, в котором сила тока измерялась непосредственно по углу отклонения магнитной стрелки. Пропуская ток известной силы, можно было получить известное отклонение стрелки гальванометра. На этом эффекте и была построена система электромагнитных телеграфов.

Первый такой телеграф изобрел русский подданный барон Шиллинг. В 1835 году он демонстрировал свой стрелочный телеграф на съезде естествоиспытателей в Бонне. Передаточный прибор Шиллинга состоял из клавиатуры в 16 клавиш, служивших для замыкания тока. Приемный прибор состоял из 6 гальванометров с магнитными стрелками, подвешенными на шелковых нитях к медным стойкам. Выше стрелок были укреплены на нитках двухцветные бумажные флажки одна сторона их была окрашена в белый, другая — в черный цвет.

Обе станции телеграфа Шиллинга были соединены восемью проводами; из них шесть соединялись с гальванометрами, одна служила для обратного тока и одна - для призывного аппарата (электрического звонка). Когда на отправной станции нажимали клавишу и пускали ток, на приемной станции отклонялась соответствующая стрелка. Различные положения черных и белых флажков на различных дисках давали условные сочетания, соответствовавшие буквам алфавита или цифрам. Позднее Шиллинг усовершенствовал свой аппарат, причем 36 различных отклонений его единственной магнитной стрелки соответствовали 36 условным сигналам.

При демонстрации опытов Шиллинга присутствовал англичанин Уильям Кук. В 1837 году он несколько усовершенствовал аппарат Шиллинга (у Кука стрелка при каждом отклонении указывала на ту или иную букву, изображенную на доске, из этих букв складывались слова и целые фразы) и попытался устроить телеграфное сообщение в Англии. Вообще, телеграфы, работавшие по принципу гальванометра, получили некоторое распространение, но весьма ограниченное.

Главным их недостатком была сложность эксплуатации (телеграфисту приходилось быстро и безошибочно улавливать на глаз колебания стрелок, что было достаточно утомительно), а так же то обстоятельство, что они не фиксировали передаваемые сообщения на бумаге. Поэтому магистральный путь развития телеграфной связи пошел другим путем. Однако устройство первых телеграфных линий позволило разрешить некоторые важные проблемы, касавшиеся передачи электрических сигналов на большие расстояния.

Поскольку проведение проволоки очень затрудняло распространение телеграфа, немецкий изобретатель Штейнгель попытался ограничиться только одним проводом и вести ток обратно по железнодорожным рельсам. С этой целью он проводил опыты между Нюрнбергом и Фюртом и выяснил, что в обратном проводе вообще нет никакой надобности, так как для передачи сообщения вполне достаточно заземлить другой конец провода. После этого стали на одной станции заземлять положительный полюс батареи, а на другой - отрицательный, избавляясь, таким образом, от необходимости проводить вторую проволоку, как это делали до этого. В 1838 году Штейнгель построил в Мюнхене телеграфную линию длиной около 5 км, используя землю как проводник для обратного тока.

Но для того чтобы телеграф стал надежным устройством связи, необходимо было создать аппарат, который бы мог записывать передаваемую информацию. Первый такой аппарат с самопишущим прибором был изобретен в 1837 г. американцем Морзе.

Морзе был по профессии художник. В 1832 году во время долгого плавания из Европы в Америку он ознакомился с устройством электромагнита. Тогда же у него появилась идея использовать его для передачи сигналов. К концу путешествия он уже успел придумать аппарат со всеми необходимыми принадлежностями электромагнитом, движущейся полоской бумаги, а также своей знаменитой азбукой, состоящей из системы точек и тире. Но потребовалось еще много лет упорного труда, прежде чем Морзе удалось создать работоспособную модель телеграфного аппарата.

Дело осложнялось тем, что в то время в Америке очень трудно было достать какие-либо электрические приборы. Буквально все Морзе приходилось делать самому или при помощи своих друзей из нью-йоркского университета (куда он был приглашен в 1835 году профессором литературы и изящных искусств).

Морзе достал в кузнице кусок мягкого железа и изогнул его в виде подковы. Изолированная медная проволока тогда еще не была известна. Морзе купил несколько метров проволоки и изолировал ее бумагой. Первое большое разочарование постигло его, когда обнаружилось недостаточное намагничивание электромагнита. Это объяснялось малым числом оборотов проволоки вокруг сердечника Только ознакомившись с книгой профессора Генри, Морзе смог исправить допущенные ошибки и собрал первую действующую модель своего аппарата.

На деревянной раме, прикрепленной к столу, он установил электромагнит и часовой механизм, приводивший в движение бумажную ленту. К маятнику часов он прикрепил якорь (пружину) магнита и карандаш. Производимое при помощи особого приспособления, телеграфного ключа, замыкание и размыкание тока заставляло маятник качаться взад и вперед, причем карандаш чертил на движущейся ленте бумаги черточки, которые соответствовали поданным посредством тока условным знакам.

Это было крупным успехом, но тут явились новые затруднения. При передаче сигнала на большое расстояние из-за сопротивления проволоки сила сигнала ослабевала настолько, что он уже не мог управлять магнитом. Чтобы преодолеть это затруднение, Морзе изобрел особый электромагнитный замыкатель, так называемое реле. Реле представляло собой чрезвычайно чувствительный электромагнит, который отзывался даже на самые слабые токи, поступавшие из линии. При каждом притяжении якоря реле замыкало ток местной батареи, пропуская его через электромагнит пишущего прибора.

Таким образом, Морзе изобрел все основные части своего телеграфа. Он закончил работу в 1837 году. Еще шесть лет ушло у него на тщетные попытки заинтересовать правительство США своим изобретением. Только в 1843 году конгресс США принял решение ассигновать 30 тысяч долларов на строительство первой телеграфной линии длиной 64 км между Вашингтоном и Балтимором.

Сначала ее прокладывали под землей, но потом обнаружилось, что изоляция не выдерживает сырости. Пришлось срочно исправлять положение и тянуть проволоку над землей. 24 мая 1844 года была торжественно отправлена первая телеграмма. Через четыре года телеграфные линии имелись уже в большинстве штатов.

Телеграфный аппарат Морзе оказался чрезвычайно практичным и удобным в обращении. Вскоре он получил широчайшее распространение во всем мире и принес своему создателю заслуженную славу и богатство. Конструкция его очень проста. Главными частями аппарата были передающее устройство - ключ, и принимающее - пишущий прибор.

Неудобство аппарата Морзе заключалось в том, что передаваемые им сообщения были понятны лишь профессионалам, знакомым с азбукой Морзе. В дальнейшем многие изобретатели работали над созданием буквопечатающих аппаратов, записывающих не условные комбинации, а сами слова телеграммы.

Широкое распространение получил изобретенный в 1855 году буквопечатающий аппарат Юза. Главными его частями были: 1) клавиатура с вращающимся замыкателем и доской с отверстием (это принадлежность передатчика); 2) буквенное колесо с приспособлением для печатания (это приемник). На клавиатуре размещалось 28 клавиш, с помощью которых можно было передать 52 знака. Каждая клавиша системой рычагов соединялась с медным стержнем.

В обычном положении все эти стержни находились в гнездах, а все гнезда располагались на доске по окружности. Над этими гнездами вращался со скоростью 2 оборота в секунду замыкатель, так называемая тележка. Она приводилась во вращение опускающейся гирей весом 60 кг и системой зубчатых колес.

На станции приема с точно такой же скоростью вращалось буквенное колесо. На его ободе находились зубцы со знаками. Вращение тележки и колеса происходило синхронно, то есть в тот момент, когда тележка проходила над гнездом, соответствующим определенной букве или знаку, этот же самый знак оказывался в самой нижней части колеса над бумажной лентой. При нажатии клавиши один из медных стерженьков приподнимался и выступал из своего гнезда.

Когда тележка касалась его, цепь замыкалась. Электрический ток мгновенно достигал станции приема и, проходя через обмотки электромагнита, заставлял бумажную ленту (которая двигалась с постоянной скоростью) приподняться и коснуться нижнего зубца печатного колеса. Таким образом, на ленте отпечатывалась нужная буква. Несмотря на кажущуюся сложность, телеграф Юза работал довольно быстро и опытный телеграфист передавал на нем до 40 слов в минуту.

Зародившись в 40-х годах XIX века, телеграфная связь в последующие десятилетия развивалась стремительными темпами. Провода телеграфа пересекли материки и океаны. В 1850 году подводным кабелем были соединены Англия и Франция. Успех первой подводной линии вызвал ряд других: между Англией и Ирландией, Англией и Голландией, Италией и Сардинией и т.д.

В 1858 году после ряда неудачных попыток удалось проложить трансатлантический кабель между Европой и Америкой. Однако он работал только три недели, после чего связь оборвалась. Только в 1866 году между Старым и Новым светом была, наконец, установлена постоянная телеграфная связь. Теперь события, происходящие в Америке, в тот же день становились известны в Европе, и наоборот. В последующие годы бурное строительство телеграфных линий продолжалось по всему земному шару. Их суммарная длина только в Европе составила 700 тыс. км.