Номография. Номограммы для урологов: как и для чего они создаются

2.2. Методы самоконтроля состояния здоровья

и физического развития (стандарты, индексы,

программы, формулы, номограммы)

2.2.1. Антропометрические измерения: понятия, виды, показатели

Сегодня существует более 300 вариантов определения понятия «здоровье»: одни характеризуют здоровье как отсутствие болезней, другие - как способность сохранять равновесие между организмом и постоянно меняющейся внешней и внутренней средой, третьи - как гармоничное физическое развитие. В настоящее время широкое распространение получило определение здоровья, данное в уставе Всемирной организации здравоохранения (ВОЗ).

Здоровье - динамическое состояние физического, духовного и социального благополучия, обеспечивающее полноценное выполнение че­ловеком трудовых, психических и биологических функций при максималь­ной продолжительности жизни.

Физическое развитие - процесс изменения и совершенствования естественных морфологических и функциональных свойств организма человека (длина, масса тела, окружность грудной клетки, жизненная емкость легких и др.) в течение его жизни. Физическое развитие управляемо. С помощью физических упражнений, различных видов спорта, рационального питания, режима труда и отдыха можно изменять в необходимом направлении различные показатели физического развития.

Самоконтроль - регулярные наблюдения занимающегося физическими упражнениями и спортом за состоянием своего здоровья, физического развития и физической подготовленно­сти с помощью простых, общедоступных приемов.

Метод антропометрических стандартов - использование средних величин признаков физического развития, полученных путем статистической обработки большого числа измерений однородного контингента людей.

Метод индексов позволяет оценивать физическое развитие по отношению отдельных антропометрических признаков с помощью простейших математических выражений.

Номограмма - график геометрических величин, применяе­мый при различных расчетах.

Формула - математическое выражение зависимости отдель­ных антропометрических или функциональных показателей для расчета стандартов, индексов, номограмм и пр.

2.2.2. Антропометрические измерения

Антропометрические измерения дают возможность определять уровень и особенности физического развития, степень его соответствия полу и возрасту, имеющиеся отклонения, а также уровень улучшения физического развития под воздействием занятий физическими упражнениями и различными видами спорта.

Антропометрические измерения следует проводить периодически в одно и то же время суток, по общепринятой методике, с использованием специальных стандартных проверенных инструментов.

При массовых обследованиях и проведении самоконтроля измеряются длина тела (рост) стоя и сидя, вес, окружность грудной клетки, жизненная емкость легких, сила кисти сильнейшей руки, становая сила.

Рост (длина тела) измеряется ростометром (в домашних условиях сантиметровой линейкой у стены). При измерении роста стоят спиной к вертикальной стойке (стене), касаясь пятками, ягодицами, лопатками и затылком (рис. 2.2.1). Наибольшая длина тела наблюдается утром. Вечером, а также после интенсивных занятий физическими упражнениями рост может уменьшиться на 2 см и более. После упражнений с отягощениями и штангой длина тела может уменьшиться на 3 см и более из-за уплотнения межпозвоночных дисков. Длина тела уменьшается за счет уплотнений межпозвоночных дисков, утомления мышц туловища, от уплощения сводов стопы. Точность измерений составляет 0,5 см.

Вес тела . При определении веса исследуемый должен стоять неподвижно на середине площадки весов. Контроль за весом тела целесообразно проводить утром, натощак. Показатель веса фиксируется с точностью до 50 г.

Есть разные способы определения нормального веса. Чтобы узнать каким должен быть нормальный вес человека, нужно из величины роста, выраженного в сантиметрах, вычесть определенное число (формула Брока-Брукша):

от 155 до 165 см вычитается 100;

о

Рис. 2.2.1. Техника измерения роста стоя и сидя

т 166 до 175 см вычитается 105;

от 176 см и выше вычитается 110.

Увеличение массы на 10 % сверх нормы характеризуется как склонность к ожирению.

Для более точной оценки массы тела применяют весо-ростовой индекс Кетле: вес (г), деленный на рост (см). Средний показатель - 370–400 г на 1 см роста у мужчин, 325–375 - у женщин.

Окружность грудной клетки измеряется в трех фазах: во время обычного спокойного дыхания (пауза), максимального вдоха и максимального выдоха (рис. 2.2.2). Исследуемый разводит руки в стороны. Сантиметровую ленту накладывают так, чтобы сзади она проходила под нижними углами лопаток, спереди у мужчин по нижнему сегменту сосков, а у женщин - над молочной железой, в месте перехода кожи с грудной клетки на железу. После наложения ленты исследуемый опускает руки. При измерении максимального вдоха не следует напрягать мышцы и поднимать плечи, а при максимальном выдохе - сутулиться.

Экскурсия грудной клетки - разница между величинами окружностей при вдохе и выдохе. Она зависит от морфоструктурного развития грудной клетки, ее подвижности, типа дыхания. Средняя величина экскурсии обычно колеблется в пределах 5–7 см.

Рис. 2.2.2. Техника измерения окружности грудной клетки

Жизненная емкость легких (ЖЕЛ) измеряется на водяном или сухом спирометрах (рис. 2.2.3). Рекомендуется выполнить 2–3 попытки. Измерения ЖЕЛ необходимо проводить до приема пищи в одно и то же время суток.

Измерение ЖЕЛ (спирометрия) - хороший метод определе­ния функции аппарата внешнего дыхания человека. Средние показатели ЖЕЛ для мужчин - 3500–4000 см 3 , для женщин - 2500–3000 см 3 . У спортсменов, особенно у пловцов, лыжников, гребцов, бегунов-стайеров, жизненная емкость легких может достигать 5000-9000 см 3 . Величина ЖЕЛ зависит от роста и массы тела, поэтому для определения соответствия измеренного индивидуального показателя норме часто пользуются таблицами «должных» величин ЖЕЛ, рассчитанными по формулам, учиты­вающим массу тела, рост и другие показатели физического раз­вития человека.

Кистевая динамометрия - метод определения силы мышц сгибателей кисти. Динамометр берут в руку циферблатом внутрь. Руку вытягивают в сторону на уровне плеча и максимально сжимают динамометр. Проводятся по два-три измерения на каждой руке, фиксируется лучший результат. Средние показатели силы правой кисти (если человек правша) у мужчин - 35–50 кг, у женщин - 15–25 кг; средние показатели силы левой кисти обычно на 5–7 кг меньше.

О

Рис. 2.2.3. Внешний вид

сухого спирометра

ценивая резуль­таты динамометрии, следует учитывать как абсолютную величину силы, так и соотнесенную с весом тела. Относительная величина мышечной силы будет более объективным показателем, потому что рост силы в процессе тренировки в значительной мере связан с увеличением веса тела и мышечной массы.

Поэтому при оценке результатов динамометрии важно учитывать основной показатель силы и соотнесенный с массой тела, т. е. относительную силу (выражается в процентах). При этом показатель силы правой руки умножается на 100 и делится на показатель массы тела. Для нетренированных молодых мужчин этот показатель сос­тавляет 60–70 % от веса тела, для женщин - 45–50 %. Например, сила правой руки (кисти) равна 52 кг, вес тела - 76 кг. Для определения относительной величины си­лы кисти надо 52 умножить на I00 и разделить на 76. Относительная сила кисти в данном случае составляет 68,4 %, т. е. находится в пределах средних величин.

Оценивая мышечную силу при самоконтроле, следует учитывать, что в течение дня показатели силы изменяются. Так, наименьшая величина их бывает утром, наибольшая - к середине дня. К концу дня, в особенности после утомительной тренировки, мышечная сила падает. Поэтому определять силу нужно в одно и то же время, луч­ше утром перед началом тренировки. Неполное восстановление мы­шечной силы на другой день после занятия говорит о чрезмерности нагрузки. Снижение ее может наблюдаться также при недомогании, нарушении режима, ухудшении настроения и т. д.

Становая динамометрия - метод определения силы мышц-разгибателей туловища, измеряется с помощью станового динамометра (рис. 2.2.4). Исследуемый становится на площадку со специальной тягой так, чтобы 2/3 каждой подошвы находились на металлической основе. Ноги вместе, выпрямлены, туловище наклонено вперед. Цепь закрепляется за крюк так, чтобы руки находились на уровне колен. Исследуемый, не сгибая ног и рук, должен медленно разогнуться, вытянув тягу. Становая сила взрослых мужчин в среднем равна 120–130 кг, женщин - 55–65 кг.

Показатель относительной силы определяется, как и при кис­тевой динамометрии:

х 100 = Относительная сила

Становая сила

Масса тела

Рис. 2.2.4. Становая динамометрия

В среднем он составляет 180–240 %. Величина относительной силы менее 170% считается низкой, 170–200 % - ниже средней, 200–230 % - средней, 230–250 % - выше средней, более 260 % - высокой.

1. Номограмма Киреева для определения давления пара при разных температурах 35 (рис. 77).

В середине номограммы помещена общая для обеих ее частей шкала давлений, по бокам - шкалы температур. На шкале давлений отложены lgP, на шкале температур 1 / T .

Каждому веществу на номограмме отвечает одна точка, выражающая зависимость температуры кипения вещества от давления. Прямая, проходящая через эту точку (называемую Киреевым "точкой жидкости"), пересекает оси в соответствующих точках, показывающих давление пара вещества при данной температуре (или температуру кипения его при данном давлении). Например, прямая МN показывает, что температура кипения хлорбензола (точка 22) при давлении 64 мм равна 60° С.

Номограмма Киреева позволяет избежать трудоемких аналитических расчетов, точность которых не всегда оправдана, для нахождения зависимости между давлением пара и температурой кипения вещества. На основании имеющихся данных по давлению пара жидкости при двух температурах можно определить положение "точки жидкости" как места пересечения двух прямых, соединяющих соответствующие точки на шкалах давлений и температуры; это показано пунктирными линиями для бензола (точка 15). Кроме того, с помощью номограммы можно, правда с еще меньшей точностью, графически определять зависимость давления пара от температуры жидкостей, для которых известна лишь одна температура кипения (большей частью температура кипения при атмосферном давлении). Оказалось, что "точки жидкостей" лежат почти точно на прямой RS или симметричной ей прямой R"S". Пересечение прямой, соединяющей соответствующие точки на шкалах давления и температур с прямой RS или R"S", определяет "точку жидкости" в последнем случае.

Прямая RS соединяет "точки жидкостей" неполярных веществ, зависимость давления пара которых от температуры рассчитана по гексану (см. стр. 13); прямая R"S" соединяет точки полярных жидкостей, рассчитанные по воде. Номограмма может быть легко построена в любом масштабе для разных жидкостей и даже, как указывает Киреев, для смесей жидкостей.

2. Номограмма для определения относительной летучести двойных смесей углеводородов (рис. 78) (см. стр. 18).

3. Номограмма для определения минимального флегмового числа 83 (рис. 79).

Находят точку пересечения радиальной прямой, отвечающей содержанию легколетучего компонента в жидкости куба, и кривой, которая соответствует относительной летучести данной смеси. Линейкой соединяют найденную точку и точку на правой оси, отвечающую содержанию легколетучего компонента в дестиллате. Точка пересечения линейки и левой оси будет соответствовать минимальному флегмовому числу.

4. Номограмма для расчетов по ректификации 83 (рис. 80).

Номограмма состоит из двух частей - левой, позволяющей определять минимальное число теоретических тарелок, и правой, которая дает возможность по минимальному числу теоретических тарелок находить число теоретических тарелок в рабочих условиях при определенном флегмовом числе.

Рис. 77. Номограмма для определения давления пара при разных температурах: 1 - SiH 3 CH 3 ; 2 - СН 2 =СН=СН 2 ; 3 - СН 3 Сl; 4 - СН 2 =СНСl; 5 - бутадиен-1, 3; 6 - С 2 Н 5 Сl; 7 - изопрен; 8 - метилформиат; 9 - н-пентан; 10 - С 2 Н 5 Вr; 11 - СН 2 Сl 2 ; 12 - этилформиат; 13 - СНСl 3 ; 14 - н-гексан; 15 - бензол; 16 - этилацетат; 17- С 6 Н 5 F; 18 - н-гептан; 19 - толуол; 20 - н-октан; 21 - н-октан; 22 - С 6 Н 5 Сl; 23 - С 6 Н 5 Вr; 24 - н-декан; 25 - С 6 H 5 J; 26 - нафталин; 27 - NH 3 ; 28 - CH 3 NH 2 ; 29 - CH 3 COCH 3 ; 30 - СН 3 ОН; 31 - С 2 Н 5 ОН; 32 - Н 2 O; 33 - СН 3 СООН; 34 - C 2 Н 5 СООН; 35 - изо-С 3 Н 7 СООН; 36 - н-бутиленгликоль; 37- НОСН 2 СН 2 ОН; 38 - глицерин; 39 - Hg; А - В. Водные растворы аммиака, содержащие 5, 10, 15, 20, 30, 35, 40, 45, 50, 55, 60, 65 70 75 80 85, 90, 95 и 100 вес. % NH 3 (приведено только общее давление пара раствора)

Абсцисса - относительная летучесть; ордината - разность температур кипения.

Вычисление эффективности колонки, необходимой для разделения данной смеси. Предварительно находят относительную летучесть α для данной двойной смеси или определяющей пары сложной смеси (см. стр. 155). Устанавливают желательный или допустимый минимальный состав дестиллата и жидкости куба (например, при содержании нижекипящего компонента в жидкости куба 0,05 молярных долей колонка должна давать дестиллат, содержащий не ниже 0,98 молярных долей этого компонента). Затем на нижней левой части номограммы находят точку пересечения прямых, отвечающих концентрациям нижекипящего компонента в дестиллате и жидкости куба (пунктирная линия). Из точки пересечения проводят вертикальную линию до кривой относительной летучести, соответствующей предварительно найденной величине. Из точки пересечения вертикальной линии и кривой а проводят горизонтальную линию влево до оси N.

Зная эффективность колонки при полном возврате и относительную летучесть смеси, можно определить составы дестиллата при разных составах жидкости в кубе.

Приведенный способ применим для расчетов результатов ректификации при полном орошении.

Если желательно найти требуемую эффективность колонки в рабочих условиях, то следует также определить минимальное флегмовое число для данной двойной смеси или для определяющей пары сложной смеси и минимальное число теоретических тарелок, как это указано выше, и установить, при каком флегмовом числе будет происходить перегонка. Затем из точки на оси флегмового числа, соответствующей выбранной величине (правая нижняя часть номограммы), проводят горизонтальную прямую до пересечения с кривой минимального флегмового числа (см. пунктир). Из точки пересечения проводят вертикаль до горизонтальной прямой, отвечающей минимальному числу теоретических тарелок. Положение найденной таким образом точки относительно кривых определяет число теоретических тарелок в рабочих условиях.

Пользуясь номограммой, можно определять число теоретических тарелок по найденному числу эквивалентных тарелок. Для этого находят точку пересечения вертикальной прямой на правой части номограммы, построенной, как указано выше, с горизонтальной прямой, идущей от шкалы Nмин. и отвечающей числу эквивалентных тарелок. Положение найденной точки по отношению кривых правой верхней части номограммы определяет число теоретических тарелок. Соответствующая цифра на оси Nмин. и дает искомую величину.

Определение числа теоретических тарелок по Оболенцову и Фросту (см. стр. 111)

Порядок графического расчета (см. цифры в кружках на схеме построения, рис. 81):

1. Соединяют прямой точку на правой части шкалы концентраций 1, отвечающую содержанию нижекипящего компонента в дестиллате х д, с точкой на шкале а, соответствующей молярной доле дестиллата от загрузки.

2. Соединяют точку на правой части шкалы концентраций I, отвечающую содержанию нижекипящего компонента в загрузке x загр. , с точкой пересечения первой построенной прямой и линией МN. Построенную прямую продолжают до шкалы дестиллата.

3. Из найденной точки пересечениядрамой и шкалы дестиллата проводят горизонтальную линию до кривой l. Из точки пересечения опускают вертикальную линию до прямой КL.

4. 5, 6. Делают аналогичное построение на левой части шкалы концентраций II и кривой II. Вертикальную линию проводят до линии

7. Соединяют найденные точки на линиях и КL и продолжают прямую до пересечения с линией РQ.

8. Из найденной на линии РQ точки опускают вертикальную линию до кривой III. От найденной на кривой точки проводят горизонтальную линию до линии FG.

9. Соединяют точку, найденную на линии FG, с точкой на шкале а, отвечающей относительной летучести перегоняемой смеси, и продолжают прямую до шкалы N - числа теоретических тарелок.

Номография

Геометрические изображения зависимостей между переменными, избавляющие от вычислений, известны давно. Разработка теории номографических построений началась в XIX веке. Первой была создана теория построения прямолинейных сетчатых номограмм французским математиком Л. Л. К. Лаланном (1843). Основания общей теории номографических построений дал М. Окань (фр.) (1884-1891) - в его же работах впервые появился термин «номограмма », установленный для применения в 1890 году Международным математическим конгрессом в Париже. Первым в России в этой области работал Н. М. Герсеванов (1906-1908), затем, создавший советскую номографическую школу, Н. А. Глаголев .

Особенность номограмм заключается в том, что каждый чертёж изображает заданную область изменения переменных и каждое из значений переменных в этой области изображено на номограмме определённым геометрическим элементом (точкой или линией); изображения значения переменных, связанных функциональной зависимостью, находятся на номограмме в определённом соответствии, общем для номограмм одного и того же типа.

Номограммы различают по способу изображения значений переменных (точками или линиями) и по способу задания соответствия между изображениями переменных. Наиболее распространены следующие номограммы:

из выравненных точек Для уравнений с тремя переменными применяют три шкалы, которые построены так, что три точки, удовлетворяющие уравнению, лежат на одной прямой - отсюда и название типа номограммы. Именно с них началось развитие номографии - раздела математики, объединяющего теорию и практические методы построения номограмм.
сетчатые Для построения сетчатых номограмм из прямых линий применяются функциональные сетки, простейшими из которых являются логарифмическая и полулогарифмическая. Кроме прямой линии могут применяться и другие так называемые разрешающие индексы номограммы :
окружности (Годсель), произвольная кривая (Швердт), катеты чертёжного угольника (Сиглер) и т.д.
транспарантные В простейшем случае состоит из двух плоскостей: основной плоскости и транспаранта с изображениями на них переменных. Транспарант часто делается из прозрачного материала. Пример транспарантной номограммы - логарифмическая линейка .

При построении сетчатых номограмм может быть поставлена дополнительная задача, анаморфоза: найти такое преобразование, при котором все три семейства линий номограммы обращаются в семейства прямых, что упрощает её вычерчивание.

Для уравнений со многими переменными применяются составные номограммы, состоящие из номограмм, связанных общими шкалами или семействами линий.

См. также

Литература

  • Номография - статья из Большой советской энциклопедии

Ссылки

  • Java Applet (англ.) для создания простейших номограмм.

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Номограмма" в других словарях:

    Номограмма … Орфографический словарь-справочник

    Номограмма - особый график, позволяющий не вычислять значение к. л. величины по формулам, а узнавать это значение, наложив на Н. линейку и сделав засечку циркулем. См. пример Н.: Номограмма для нахождения квадратов чисел от 1 до 10. Показано 8,52 = 72,25 … Издательский словарь-справочник

    График, номография Словарь русских синонимов. номограмма сущ., кол во синонимов: 2 график (17) … Словарь синонимов

    номограмма - Чертеж, позволяющий заменять вычисление по формулам выполнением простейших геометрических построений, по которым с помощью ключа считываются ответы. [ГОСТ Р 7.0.3 2006] номограмма [Лугинский Я. Н. и др. Англо русский словарь по электротехнике и… … Справочник технического переводчика

    График, позволяющий определить результат вычислений графическим путем, без дополнительных расчетов, с помощью специальных таблиц, представляющих собой значения переменных и результирующей величины. Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

    - (от греческого nomos закон и...грамма), графическое представление функции от нескольких переменных, позволяющее с помощью простых геометрических операций (например, прикладывание линейки) исследовать функциональные зависимости без вычислений.… … Современная энциклопедия

    См. в ст. Номография … Большой Энциклопедический словарь

    НОМОГРАММА, номограммы, жен. (от греч. nomos закон и gramma мера веса) (мат.). График геометрических величин, применяемый при различных расчетах. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    - (Nomogram, nomograph) графическое отображение в числовых пометках математического выражения, позволяющее во много раз сократить вычислительную работу. Н. применимы всюду, где не требуется большой точности расчетов, и предохраняют от случайных… … Морской словарь

    Чертеж, изображающий функциональную зависимость между несколькими переменными величинами. Каждый чертеж изображает заданную область изменения переменных и каждое из значении переменных в этой области изображено на нем определенным геометрическим… … Геологическая энциклопедия

    - (от греч. nomos закон, порядок и grapho пишу) англ. nomogram/nomograph; нем. Nomogrатт. Чертеж, изображающий функциональную зависимость между величинами, дающий возможность без вычислений найти значение одной переменной по данным значениям… … Энциклопедия социологии

Книги

  • Сборник номограмм для химико-технологических расчетов , А. К. Чернышев, К. Л. Поплавский, Н. Д. Заичко. В сборнике приведено 225 номограмм и диаграмм, с помощью которых можно быстро и достаточно точно определить основные характеристики различных веществ (коэффициентывязкости, теплопроводности,…

1. Построение номограммы зависимости P z= f (t, S).

Зависимость силы P z от глубины t и подачи S выражается формулой:

P z = 10С pzt x pz S y pz V n K pz ,Н

Значения С pz , X pz , Y pz , K pz выбираем по таблицам общемашиностроительных нормативов или соответствующим таблицам (2) также, как и при аналитическом методе расчета режима резания; С pz = 300 ; X pz = 1; Y pz = 0.75; K pz = 0,8.

Задаваясь различными значениями глубины (при S = 1 мм/об), будем иметь различные значения силы:

, Н;

t,мм 0,5 1,5 2,5 3,5
P z , Н
lgP z 2.079 2.38 2.556 2.681 2.778 2.857 2.924 2.982

На оси ординат откладываем значение силы P z , на оси абсцисс – значения подачи S. P zmax берем из условия прочности станка:

, Q м.п = 6000 Н (по паспорту станка 16К20);

Н;

P zmin рассчитываем, считая, что наименьшая глубина резания будет примерно 0,5 мм, а наименьшая подача (по станку) – 0,07 мм/об.

P zmin =10 300 0,5 0,07 0,075 0,8 = 163 Н.

Принимаемый диапазон сил: 200 – 15000 Н.

Диапазон подач берем по станку: 0,07 – 4,16 мм/об. На линии ординат (при S = 1 мм/об) откладываем значения полученных сил и через соответствующие точки проводим прямые линии под углом α = 37 (tg α = Y pz = 0,075).

При S = 0,195 P z = 190 Н

2. Построение номограммы зависимости v=f(t,s)

Зависимость скоростиV от глубины t и подачи s выражается формулой:

V=C v *K v /(T m *t x v *S y v) , м/мин

Номограмма строится в логарифмических координатах. По оси ординат откладывают скорость резания lgV, а по оси абсцисс – подачу lgS.

При постоянном значении глубины резания (C v K v /T m t x v =C)

V=C/S y v

После логарифмирования получим уравнения прямой линии, наклоненной к оси абсцисс под углом a 1 (tg a 1 =у V)

lg V=lgC-y v lgS

Для различных значений t получаем ряд прямых линий. При построении монограммы удобно принять S=1мм/об.

Задаваясь различными значениями глубины резания, имеем соответствующие им значения скорости резания:

t,мм 0,5 1,5 2,5 3,5
V , м/мин 93,93 84,657 79,66 76,3 73,8 71,8 68,76
lgV 1,973 1,928 1,9 1,883 1,87 1,86 1,85 1,84

Отложив на оси абсцисс S=1мм/об, проводим вертикальную линию и на ней наносим точки, соответствующие V 1 ,V 2 ,...V n . Через них проводим прямые линии под углом a 1 = 17 (tg a 1 =у V).

При S = 0,195 V = 69 м/мин

3. Построение номограммы зависимости v=f(D,n)

Зависимость скоростиV от диаметра заготовки D и числа оборотов n выражается формулой

V=pDn/1000 ,м/мин.

Номограмма строится в логарифмических координатах. По оси ординат откладывают скорость резания lgV, а по оси абсцисс – диаметр детали lgD.

Приняв pn/1000 = С , получим V=CD

После логарифмирования получим уравнение прямой, наклоненной к оси абсцисс под углом a 2 = 45º (tg45º = 1).

lgV = lgC+ 1lgD (46)

Для различных n получаем ряд прямых линий. При построении номограммы удобно принять D=100мм, тогда

V=pn/10 , м/мин. (47)

Подставляя в формулу различные значения чисел оборотов(по станку), получим соответствующие им значения скорости резания:

n,мм
V , м/мин 50,265 78,54 98,96 125,664 157,08 197,92 251,33 392,7
lgV 1,7 1,89 1,995 2,099 2,196 2,296 2,4 2,59

Отложив на оси абсцисс D = 100 мм, проведем вертикальную линию, на ней отметим точки, соответствующие значениям найденных скоростей (V 1 , V 2 , …,V n ). Через эти точки проведем линии под углом 45 0 к оси абсцисс.

При D = 100мм V = 79 м/мин

4.Посроение номограммы зависимости P z = f(M кр, D)

Зависимость P z (сила, допускаемая крутящим моментом станка - M кр) от M кр и D выражается уравнением

Номограмма строится в логарифмических координатах. По оси ординат откладывается сила резания lgP z , по оси абсцисс – диаметр детали lgD.

Логарифмируя приведенную выше зависимость, получим

lgP z = lg(2·M кр) - 1·lgD

Это уравнение прямой линии, проведенное под углом 45 0 к оси абсцисс. Для различных значений крутящих моментов получим ряд прямых линий. При построении номограммы удобно принять

D = 100 мм, тогда

Подставляя в формулу различные значения крутящих моментов (для разных ступеней чисел оборотов станка), определяются соответствующие им значения P z:

М,Н*м
P z , Н 10,24 7,02 5,58 4,4 3,52 2,78 2,38 2,2
lgP z 1,01 0,846 0,747 0,643 0,547 0,444 0,377 0,342

Отложив на оси абсцисс D = 100 мм, проведем вертикальную линию, на которой отметим точки, соответствующие найденным значениям P z (P z 1, P z 2 , … , P zn).

Через эти точки проведем линии под углом 45 0 к оси абсцисс.

При D =100 Pz= 7 Н

5. Построение номограммы зависимости t 0 = f(n,S).

Зависимость основного времени t 0 от n и S выражается

где L – длина рабочего хода резца, мм.

Целесообразно строить номограмму для L = 100 мм (или другого постоянного значения, например, L = 10 мм). Номограмму строят в логарифмических координатах. По оси ординат откладывают основное время lgt 0 , по оси абсцисс - подачу lgS.