Какие звуки мы слышим. Тексты детских стихов и песенок, используемых в блоге

Многих из нас иногда интересует простой физиологический вопрос, касающийся того, как мы слышим. Давайте рассмотрим, из чего же состоит наш орган слуха и как происходит его работа.

Прежде всего, отметим, что слуховой анализатор имеет четыре части:

  1. Наружное ухо. К нему относят слуховой привод, ушную раковину, а также барабанную перепонку. Последняя служит для изоляции внутреннего конца слухового провода от окружающей среды. Что касается слухового прохода, то он имеет совершенно изогнутую форму длиной около 2,5 сантиметров. На поверхности слухового прохода имеются железы, а также она покрыта волосками. Именно эти железы и выделяют ушную серу, которую мы вычищаем по утрам. Также слуховой проход необходим для поддержания необходимой влажности и температуры внутри уха.
  2. Среднее ухо. Та составляющая слухового анализатора, которая находится за барабанной перепонкой и заполнена воздухом, называется средним ухом. Оно соединяется при помощи евстахиевой трубы с носоглоткой. Евстахиева труба представляет собой достаточно узкий хрящевой канал, который в обычном состоянии закрыт. Когда мы совершаем глотательные движения, он открывается и через него в полость поступает воздух. Внутри среднего уха расположены три маленькие слуховые косточки: наковальня, молоточек и стремя. Молоточек при помощи одного конца соединяется со стременем, а оно уже с литкой во внутреннем ухе. Под действием звуков барабанная перепонка находится в постоянном движении, а слуховые косточки уже дальше передают её колебания внутрь. Она является одним из важнейших элементов, которое необходимо изучить при рассмотрении того, какое строение уха человека
  3. Внутреннее ухо. В этой части слухового ансамбля имеется сразу несколько структур, однако слух контролирует только одна из них – улитка. Такое название она получила из-за своей спиральной формы. Она имеет три канала, которые заполнены лимфатическими жидкостями. В среднем канале жидкость значительно отличается по составу от остальных. Тот орган, который отвечает за слух, называется Кортиев орган и расположен в среднем канале. Он состоит из несколько тысяч волосков, улавливающих колебания, которые создаёт жидкость, движущаяся по каналу. Здесь же генерируются электрические импульсы, передающиеся затем в кору головного мозга. Определенная волосковая клетка реагирует на особый вид звука. Если же происходит так, что волосковая клетка гибнет, то человек перестаёт воспринимать тот или иной звук. Также для того, чтобы понять, как человек слышит, следует рассмотреть еще и слуховые проводящие пути.

Слуховые пути

Ими являются совокупность волокон, которые проводят нервные импульсы от самой улитки и до слуховых центров вашей головы. Именно благодаря путям наш мозг воспринимает тот или иной звук. Находятся слуховые центры в височных долях мозга. Звук, который проходит через внешнее ухо к головному мозгу продолжается около десяти миллисекунд.

Как мы воспринимаем звук

Человеческое ухо перерабатывает получаемые из окружающей среды звуки в специальные механические колебания, которые потом преобразовывают движения жидкости в улитке в электрические импульсы. Они по путям центральной слуховой системы переходят в височные части мозга, чтобы затем быть распознанными и обработанными. Теперь уже промежуточные узлы и сам головной мозг извлекает некую информацию относительно громкости и высоты звучания, а также друге характеристики, такие как время улавливания звука, направление звука и другие. Таким образом, мозг может воспринимать полученную информацию от каждого уха по очереди или совместно, получая единое ощущение.

Известно, что внутри нашего уха хранятся некие «шаблоны» уже изученных звуков, которые наш мозг распознал. Именно они помогают мозгу правильно сортировать и определять первоисточник информации. Если звук снижается, то мозг соответственно начинает получать неправильную информацию, что может привести к неправильному толкованию звуков. Но не только звуки могут искажаться, со временем головной мозг тоже подвергается неправильной трактовке тех или иных звуков. Результатом может оказаться неправильная реакция человека или неверная трактовка информации. Чтобы правильно слышать и достоверно трактовать услышанное, нам понадобится синхронная работа, как мозга, так и слухового анализатора. Именно поэтому можно отметить, что человек слышит не только ушами, но и головным мозгом.

Таким образом, строение уха человека достаточно сложное. Только согласованная работа всех частей органа слуха и головного мозга позволит нам правильно понимать и трактовать услышанное.

Наверняка, все видели волны на поверхности пруда или озера, то есть на воде, и как они ударяются о берег.

Звук - это такая же волна , только мы ее не видим, потому что она "волнуется" в воздухе. И попадает прямо к нам в ушки. Внутри уха есть такая мембранка, которая называется барабанная перепонка. Звуковая волна ударяется в барабанную перепонку (внутри уха она соединена с тремя маленькими косточками молоточком, стремечком и наковаленкой). Барабанная перепонка прогибается и опять возвращается в свое положение, а наш умный мозг улавливает эти изменения и узнает звук.

Но ухо человека слышит не все звуки.

Если звуковая волна ударяется в барабанную перепонку слишком часто, перепонка не успевает так же быстро прогибаться и выпрямляться, и мы звук не слышим. Такой звук называют ультразвуком (или высокочастотным). Так "разговаривают" дельфины и летучие мыши, собаки и кошки, и даже муравьи. Ультразвуки издают бабочки, саранча, кузнечики.

Свойства ультразвука используются людьми для отпугивания грызунов. Мыши, крысы, кроты и землеройки хорошо слышат его, расценивают как сигнал опасности и убегают.

Если звуковая волна очень редко ударяется в перепонку, мы ее тоже не слышим. Такие звуки называют инфразвуками (или низкочастотными) . Так "разговаривают" слоны. Тигры издают инфразвуки, для устрашения.

Инфразвук возникает при землетрясениях, извержениях вулканов, при штормах, во время ураганов и бурь. Инфразвук может распространяться на большие расстояния (имеет малое поглощение в воде, в земле и в воздухе).

Это свойство инфразвука используется людьми для предсказания цунами и ураганов. Многие животные слышат инфразвук, и задолго до землетрясения или урагана убегают или прячутся. Медузы хорошо слышат надвигающийся шторм и заранее (за 20 часов) уплывают на глубину.

Инфразвук плохо действует на человека.
Если человек находится в зоне сильного инфразвука, он может испытать беспричинный страх, головокружение, сильную усталость, упасть в обморок и на время потерять зение. Инфразвук может вызвать сильню боль в ушах и даже убить (разрыв сосудов и сердца).

Дополнительная информация

Люди и животные слышат ушами. А чем еще могут слышать живые существа?

Рыбы слышат телом. С каждого бока у рыбы есть боковая линия. И еще у рыб есть органы слуха внутри головы.

Медузы имеют маленькие органы слуха на краю своего колокола рядом с малюсенькими глазками.

Птицы хорошо слышат, у них есть уши. Если отодвинуть перышки по бокам головы мы увидим на каждой стороне небольшое отверстие - это и есть уши.

Лягушки слышат ушами. У них ушные отверстия располагаются на голове, по бокам.

Кузнечики и саранча слышат ногами. На передних лапках, покрытых волосками есть мембрана - это и есть "уши". А вторая пара ушей расположена под коленками.

У пчел "уши" тоже находятся на лапках (на лапки натянуты перепонки)

Комары слышат антеннами на голове.

Осы и шмели тоже имеют на голове волоски между глаз, которыми слышат.

У цикад уши-мембраны расположены в брюшке.

Жаль, что наши уши не могут слышать эти неслышимые звуки. Но люди научились преобразовывать неслышимые звуки в слышимые. И теперь мы можем проникнуть в тайны природы. Мы можем послушать как поют киты

И как разговаривают дельфины .

Клетки, воспринимающие звуки, находятся в перепончатой капсуле — улитке, спрятанной в глубине черепа. Улитка — это спирально закрученная трубка, заполненная жидкостью. Вместе с органом равновесия — тремя полукружными каналами — улитка образует так называемый лабиринт. Овальное окно соединяет улитку со средним ухом, костной полостью, лежащей в преддверии улитки. Это окно затянуто тонкой кожистой пленкой. Она реагирует на любые колебания воздуха, уловленные ушной раковиной и попавшие в наружный слуховой проход. Расскажем подробнее о том, как это происходит.

Сначала колебания воздуха заставляют вибрировать барабанную перепонку — тончайшую пластинку, перегораживающую наружный слуховой проход. Далее вибрация передается по крохотным слуховым косточкам: молоточку, наковальне и стремечку. Эти косточки, словно мостик, протянулись по всему среднему уху, соединяя барабанную перепонку с улиткой. Вот и получается, что пленка, закрывающая овальное окно, реагирует на любые колебания воздуха. Далее вибрации передаются жидкости, заполняющей улитку. Перекатывающиеся по ней волны раздражают слуховые клетки внутреннего уха. Головной мозг улавливает эти раздражения и распознает в них звуки. К сказанному добавим то же, что мы говорили и о зрении. Природа снабдила нас двумя ушами, поэтому мы можем определить, откуда до нас долетел звук. Итак, у нас есть не только пространственное зрение, но и объемный слух. Там же, в лабиринте, рядом с улиткой, протянулись три полукружных канала: горизонтальный и два вертикальных, причем один из них выгнут вперед, а другой — вбок. Таким образом, каналы расположены в трех взаимно перпендикулярных плоскостях. Это и есть вестибулярный аппарат, или орган равновесия.

Звуковые волны, распространяющиеся в воздухе, проделают сложный путь, прежде чем мы воспримем их. Сначала они проникают в ушную раковину и заставляют вибрировать барабанную перепонку, замыкающую наружный слуховой проход. Слуховые косточки доносят эти колебания до овального окна внутреннего уха. Пленка, которая закрывает окно, передает вибрации заполняющей улитку жидкости. Наконец колебания достигают слуховых клеток внутреннего уха. Головной мозг воспринимает зги сигналы и распознает в них шумы, звуки, музыку, речь.

Когда человек меняет положение тела, полукружные каналы — дугообразные трубочки тоже движутся вместе с ним, тогда как жидкость, заполняющая их, инерционна, она не поспевает за нашими движениями и, следовательно, смещается относительно стенок канала. Специальные клетки —рецепторы следят за перемещениями жидкости в полукружных каналах. Обо всем замеченном они сообщают головному мозгу, и тот обрабатывает поступившую информацию. Рецепторные клетки органа равновесия погружены в жидкость, заполняющую внутреннее ухо. Они фиксируют любые ее движения и извещают о них мозжечок, который собирает и сопоставляет все эти сообщения. После этого все органы тела получают нужную информацию и различные приказы, что и помогает человеку поддерживать равновесие. О результатах тут же сообщается в большой мозг.

Во внутреннем ухе вплотную друг к другу располагаются орган слуха (улитка) и орган равновесия (лабиринт). В улитке тонкая пленка — мембрана преобразует звуковые волны в волновые движения жидкости. Волны жидкости посредством сложного механизме возбуждают слуховые клетки. Лабиринт, расположенный позади улитки, фиксирует любое движение человека.


Ультразвук в сельском хозяйстве
Ультразвук в пищевой промышленности
Ультразвук в биологии
Ультразвуковая диагностика заболеваний
Ультразвуковое лечение заболеваний
На суше и на море

Совокупность слышимых и неслышимых звуков напоминает в принципе спектр солнечных лучей, в котором есть видимая область - от красного до фиолетового цвета и две невидимые - инфракрасная и ультрафиолетовая. Именно по аналогии с солнечным спектром получили название звуки, не воспринимаемые человеческим ухом: инфразвук, ультразвук и гиперзвук.
Восприятие звуков людьми очень индивидуально. Каждый слышит, так сказать, по-своему. Дети, например, слышат звуки более высоких частот, чем пожилые люди.
Как уже упоминалось, звук следует рассматривать с объективной и субъективной точек зрения. Звук как субъективное явление более сложен и менее изучен, чем его объективная физическая сущность.
Как мы воспринимаем звук?
Наружное ухо состоит из ушной раковины и слухового прохода, соединяющего ее с барабанной перепонкой. Основная функция наружного уха - определение направления на источник звука. Слуховой проход, представляющий сужающуюся внутрь трубку длиной два сантиметра, предохраняет внутренние части уха и играет роль резонатора. Слуховой проход заканчивается барабанной перепонкой - мембраной, которая колеблется под действием звуковых волн. Именно здесь, на внешней границе среднего уха, и происходит преобразование объективного звука в субъективный, то есть звуковой волны в субъективное ее ощущение.
Непосредственно за барабанной перепонкой расположены три маленькие соединенные между собой косточки: молоточек, наковальня и стремя, с помощью которых колебания передаются внутреннему уху. Там, в слуховом нерве, они преобразуются в биоэлектрические сигналы. Малая полость, где находятся молоточек, наковальня и стремя, наполнена воздухом и соединена с полостью рта евстахиевой трубой. Благодаря последней поддерживается одинаковое давление на внутреннюю и внешнюю стороны барабанной перепонки. Обычно евстахиева труба закрыта, а открывается лишь при внезапном изменении давления (при зевании или глотании) для выравнивания его. Если у человека евстахиева труба блокирована, например, из-за простудного заболевания, то давление не выравнивается, и человек ощущает боль в ушах.
При передаче колебаний от барабанной перепонки к овальному окну, которое является началом внутреннего уха, энергия первоначального звука как бы концентрируется в среднем ухе. Это осуществляется двумя способами, в основе которых лежат хорошо известные принципы механики. Во-первых, уменьшается амплитуда, но одновременно увеличивается мощность колебаний. Здесь можно провести аналогию-с рычагом, когда для поддержания равновесия к большому плечу прикладывается меньшая сила, а к меньшему - большая. С какой точностью осуществляется такое превращение в человеческом ухе, видно из того, что амплитуда колебаний барабанной перепонки равна диаметру атома водорода (10~8 сантиметра), а молоточек, наковальня и стремя уменьшают ее в три раза. Во-вторых, и это более существенно, концентрация звука обусловливается разностью диаметров барабанной перепонки и овального окна внутреннего уха.
Сила, действующая на барабанную перепонку, равна произведению давления на площадь барабанной перепонки. Эта сила через молоточек, наковальню и стремя воздействует на овальное окно, с противоположной стороны которого находится жидкость. Площадь овального окна в 15-30 раз меньше площади барабанной перепонки, поэтому и давление на него в 15-30 раз больше. Кроме того (как уже было сказано, молоточек, наковальня и стремя увеличивают мощность колебаний в три раза), благодаря среднему уху давление на овальное окно превышает почти в 90 раз первоначальное давление, действующее на барабанную перепонку. Это очень важно, поскольку дальше звуковые волны распространяются уже 8 жидкости. Не будь увеличения давления, звуковые волны вследствие эффекта отражения не смогли бы проникнуть в жидкость. Молоточек, наковальня и стремя имеют крошечные мышцы, которые обеспечивают защиту внутреннего уха от повреждений при воздействии сильных шумов. Внезапные очень интенсивные звуки могут разрушить этот защитный механизм и вызвать серьезные повреждения уха.
Слуховой аппарат человека - необычайно сложный механизм. Особенно в той части, которая начинается с так называемого овального окна - порога внутреннего уха. Звуковые волны здесь уже распространяются в жидкости (перилимфе), которой наполнена улитка. Этот орган внутреннего уха, действительно напоминающим улитку, имеет длину три сантиметра и по всей длине разделен перегородкой на две части. Звуковые волны, попавшие на овальное окно улитки, доходят до перегородки, огибают ее и далее распространяются почти к тому же самому месту, где они впервые коснулись перегородки, но уже с другой стороны.
Перегородка улитки, по сути дела, состоит из основной мембраны, очень тонкой и тугой вблизи овального окна, но становящейся толстой и вялой ближе к <хвосту> улитки. Звуковые колебания создают на поверхности основной мембраны волнообразную рябь, при этом гребни для каждой данной частоты лежат в совершенно определенных участках мембраны. Высокочастотные звуки создают максимум колебаний на том участке основной мембраны, где она наиболее натянута, то есть вблизи овального окна, низкочастотные же звуки - на хвостовую часть улитки, где основная мембрана толстая и вялая. Этот механизм позволяет объяснить, как человек выделяет тоны различной частоты.
Механические колебания преобразуются в электрические в специальном органе (органе Корти), размещенном над верхней частью основной мембраны и представляющем собой набор из 23,5 тысячи <мясистых> ячеек, расположенных вдоль длины органа четырьмя рядами. Над органом Корти находится похожая на заслонку текто-риальная мембрана. Оба эти органа погружены в эндо-лимфу и отделены от остальной части улитки мембраной Рейснера. Волоски, растущие из ячеек органа Корти, почти пронизывают поверхность текториальной мембраны. Основная мембрана, на которой находится орган Корти вместе со своими волосистыми ячейками, как бы шарнирно подвешена на текториальной мембране. При деформации основной мембраны между ними возникают касательные напряжения, которые изгибают волоски, соединяющие две мембраны. Благодаря такому изгибу и происходит окончательное преобразование звука - теперь он уже закодирован в виде электрических сигналов. Изгибы волосков играют в некотором роде роль пусковых механизмов для электрохимических реакций в ячейках. Они и являются источниками электрических сигналов.
Что происходит далее со звуком и какую форму он приобретает, пока еще остается до конца неразгаданной тайной. Известно только, что теперь звук закодирован всплесками электрической активности, так как каждая волосистая ячейка выделяет электрический импульс. Природа этого кода тоже пока неизвестна. Расшифровка его усложняется тем, что волосистые ячейки излучают электрические импульсы даже тогда, когда никакого звука нет. Только разгадав этот код, можно будет попять истинную природу субъективного звука, понять, как мы слышим то, что слышим.
Основные физические характеристики любого колебательного движения - период и амплитуда колебания, а применительно к звуку - частота и интенсивность колебаний.
Периодом колебания называется время, в течение которого совершается одно полное колебание, когда, например, качающийся маятник из крайнего левого положения переместится в крайнее правое и вернется в исходное положение.
Частота колебаний - это число полных колебаний (периодов) за одну секунду. Эту величину в Международной системе единиц называют герц (Гц). Частота - одна из основных характеристик, по которой мы различаем звуки. Чем больше частота колебаний, тем более высокий звук мы слышим, то есть звук имеет более высокий тон.
Нам, людям, доступны звуки, ограниченные следующими частотными пределами: не ниже 15-20 герц и не выше 16-20 тысяч герц. Ниже этого предела находится инфразвук (меньше 15 герц), а выше - ультразвук и гиперзвук, то есть 1,5-10 4 - 10 9 герц и 10 9 -10 13 герц соответственно.
Ухо человека наиболее чувствительно к звукам с частотой от 2000 до 5000 герц. Наибольшая острота слуха наблюдается в возрасте 15-20 лет. Затем слух ухудшается. У человека до 40 лет наибольшая чувствительность находится в области 3000 герц, от 40 до 60 лет - 2000 герц, а старше 60 лет- 1000 герц. В пределах до 500 герц человек различает повышение или понижение частоты всего лишь на один герц. На более высоких частотах люди менее восприимчивы к такому незначительному изменению частоты. Так, например, при частоте более 2000 герц человеческое ухо способно отличить один звук от другого только тогда, когда разница в частоте будет не меньше 5 герц. При меньшей разнице звуки будут восприниматься как одинаковые. Однако правил без исключений не бывает. Есть люди, обладающие необычайно тонким слухом. Например, одаренный музыкант может отреагировать на изменение даже на какую-то долю одного колебания.
С периодом и частотой связано понятие о длине волны. Длиной звуковой волны называется расстояние между двумя последовательными сгущениями или разрежениями среды. На примере волн, распространяющихся на поверхности воды,- это расстояние между двумя гребнями (или впадинами).
Звуки могут отличаться один от другого и по тембру?. Это значит, что одинаковые звуки по высоте тона могут звучать по-разному, потому что основной тон звука сопровождается, как правило, второстепенными тонами, которые всегда выше по частоте. Они придают основному звуку дополнительную окраску и называются обертонами. Иными словами, тембр - качественная характеристика звука. Чем больше обертонов накладывается на основной тон, тем <сочнее> звук в музыкальном отношении. Если основной звук сопровождается близкими ему по высоте обертонами, то сам звук будет мягким, <бархатным>. Когда же обертоны значительно выше основного тона, появляется <металличность> в звуке или голосе.
Органы слуха благодаря своему замечательному устройству легко отличают особенности одного колебания от другого, голос близкого или знакомого человека от голосов других людей. По тому, как говорит человек, мы судим о его настроении, состоянии, переживаниях. Радость, боль, гнев, испуг, страх перед опасностью - все это можно услышать, даже не видя того, кому принадлежит голос.
Вторая основная характеристика - амплитуда колебаний. Это наибольшее отклонение от положений равновесия при гармонических колебаниях. На примере с маятником амплитуда - максимальное отклонение его от положения равновесия в крайнее правое или левое положение. Амплитуда колебаний, так же как и частота, определяет интенсивность (силу) звука. При распространении звуковых волн отдельные частицы упругой среды последовательно смещаются. Это смещение передается от частицы к частице с некоторым запозданием, величина которого зависит от инерционных свойств среды. Передача смещений от частицы к частице сопровождается изменением расстояния между этими частицами, в результате чего происходит изменение давления в каждой точке среды.
Акустическая волна несет в направлении своего движения определенную энергию. Благодаря этому мы слышим звук, создаваемый источником, находящимся на определенном расстоянии от нас. Чем больше акустической энергии достигает уха человека, тем громче слышится звук. Сила звука, или ее интенсивность, определяется количеством акустической энергии, протекающей за одну секунду через площадку в один квадратный.сантиметр. Следовательно, интенсивность акустических волн зависит от величины акустического давления, создаваемого источником звука в среде, которое, в свою очередь, определяется величиной смещения частиц среды, вызываемого источником. В воде, например, даже очень небольшие смещения создают большую интенсивность/ звуковых волн.
Интенсивность обычных, воспринимаемых человеческим ухом звуков очень мала. Громкому разговору, к примеру, соответствует интенсивность звука, равная приблизительно одной миллиардной доле ватта на квадратный сантиметр. Но так как площадь двух слуховых каналов ушей человека приблизительно равна одному квадратному сантиметру, то мощность в одну миллиардную долю ватта человек воспринимает как достаточно громкий звук. Если бы мы захотели вскипятить чайник с водой, используя энергию звуковой речи, превращенную в тепло без всяких потерь, то для этого потребовалась бы энергия непрерывного громкого разговора всех жителей Москвы в течение суток, в то время как на газовой плите такой чайник закипает в течение 10 минут. А мощность, которая получилась бы при одновременном крике всех людей земного шара, была бы в два раза меньше мощности двигателя автомобиля <Жигули>.
С интенсивностью звука связана громкость. Чем больше интенсивность звука, тем он громче. Однако понятия о громкости и интенсивности не равнозначны. Громкость звука - это мера силы слухового ощущения, вызываемого звуком. Звук одинаковой интенсивности может создавать у различных людей неодинаковые по своей громкости слуховые восприятия. Так, например, звуки, одинаковые по интенсивности, но различающиеся по высоте, воспринимаются ухом с разной громкостью в зависимости от особенностей слуховых восприятий. Мы не воспринимаем как очень слабые, так и очень громкие звуки. Каждый человек обладает так называемым порогом слышимости, который определяется наименьшей интенсивностью звука, необходимой для того, чтобы звук был услышан.
Наиболее хорошо воспринимаемые звуки по частоте лучше различаются и по громкости. При частоте 32 герца по громкости различаются три звука, при частоте 125 герц - 94 звука, а при частоте 1000 герц - 374. Увеличение это не беспредельно. Начиная с частоты 8000 герц, число различимых звуков по громкости уменьшается. При частоте 16 000 герц человек может различать только 16 звуков.
Звуки очень большой интенсивности человек перестает слышать и воспринимает их как ощущение давления или боли. Такую силу звука называют порогом болевого ощущения. Исследования показали, что интенсивность, при которой звуки разной частоты вызывают болевое ощущение, различна. Если силу звука увеличить в миллион раз, громкость возрастает только в несколько сотен раз. Выяснилось, что ухо преобразует силу звука в громкость по сложному логарифмическому закону, ограждая свои внутренние части от чрезмерных воздействий.
Наиболее мощные звуки, с которыми большинству людей приходится сталкиваться в своей повседневной жизни, вызывают либо раздражение, либо даже боль в. ушах. Но если мощность звука, обусловливающего болезненное ощущение в ушах, понизить в десять миллионов раз, то и такой звук оказывается достаточно интенсивным, чтобы распространяться в воздухе.
Для измерения нашего субъективного восприятия звука используется логарифмическая шкала. Когда мощность одного звука в 10 раз больше мощности другого, то говорят, что интенсивность первого звука составляет 10 децибел по отношению ко второму, в 100 раз - 20 децибел, в 1000 раз - 30 децибел и т. д. Иными словами, всякий раз, когда отношение мощностей звука увеличивается в 10 раз, интенсивность звука, выраженная в децибелах, возрастает на 10. При таком подходе мы получаем не абсолютную, а лишь относительную шкалу. Необходимо как-то выделить уровень нулевой интенсивности, чтобы от него производить отсчет. Такой уровень выбран на основе субъективных показателей - это минимальный порог восприятия звука человеческим ухом, который равен 10 ~12 ватта на квадратный метр. Звук в 10 раз более мощный имеет уровень интенсивности 10 децибел, в миллион раз - 60 децибел, в 10 миллион миллионов раз, вызывающий болевое ощущение,- 130 децибел, что соответствует 10 ваттам на квадратный метр.
Имеется еще одна особенность человеческого слуха. Если к звуку определенной громкости добавить звук той же или близкой к ней частоты, то общая громкость окажется меньше математической суммы тех же громкостей. Одновременно звучащие звуки как бы компенсируют или маскируют друг друга. А звуки, далеко отстоящие по частоте, не влияют друг на друга, и их громкость оказывается максимальной. Эту закономерность композиторы используют для достижения наибольшей мощности звучания оркестра.
С точки зрения восприятия органами слуха звуков их можно разделить в основном на три категории: шум, музыка, речь. Такое разделение оправдано не только нашей привычкой к классификации явлений и предметов. Шум, музыка и речь - разные области звуковых событий,^ обладающие специфической для человека информацией. Потому-то они и изучаются разными специалистами.
Шум - бессистемное сочетание большого количества звуков, когда все эти звуки сливаются в нечто хаотическое, нестройное. Каждый из нас достаточно хорошо знаком с этим не всегда приятным явлением. Даже когда мы, занятые своими мыслями, не замечаем будто бы шума, он оказывает на нас свое воздействие, как правило, отрицательное. Час, другой, и мы чувствуем, что начинает побаливать голова, появляется слабость.
Причем нам иногда кажется, что все это происходит вроде бы беспричинно. Только уж если шум мешает нам основательно, действует на нас раздражающе, мы твердо знаем, что голова заболела от него.
Сейчас специалисты считают борьбу с шумом в городах и особенно на промышленных предприятиях одной из важнейших проблем. Речь идет, конечно, не о том, чтобы всюду стояла абсолютная тишина. Да она просто и не достижима в условиях современного города и современного производства. Более того, человек не может жить в абсолютной тишине и никогда не стремится к ней. Не случайно безмолвие сурдокамер - одно из не-^ легких испытаний для тех, кто готовится к космическим полетам. Человек, долго находящийся в абсолютной тишине, испытывает <информационный голод>, который может привести к расстройству психики. Словом, длительная абсолютная тишина так же пагубна для психики, как и беспрерывный повышенный шум. Оба эти состояния противоестественны для человека, который за миллионы лет эволюции приспособился к определенному шумовому фону - разнообразным и ненавязчивым звукам природы.
Наблюдения за состоянием здоровья рабочих шумных цехов показали, что под действием шума нарушается динамика центральной нервной системы и функции вегетативной нервной системы. Проще говоря, шум может повышать давление крови, учащать или замедлять пульс, понижать кислотность желудочного сока, кровообращение мозга, ослаблять память, снижать остроту слуха. У рабочих шумных производств отмечается боле* высокий процент заболеваний нервной и сосудистой систем, желудочно-кишечного тракта.
Одна из причин отрицательного воздействия шумов е том, что, когда мы сосредоточиваемся, чтобы лучше слышать, наш слуховой аппарат работает с большой перегрузкой. Одноразовая перегрузка не страшна, но когд мы перенапрягаемся изо дня в день, из года в год, бесследно это не проходит.
Какое количество и какого именно шума может вы держать человек, зависит от возраста. Молодые, как правило, выдерживают больше шума, чем пожилые, грохот оркестра или пронзительное пение, которое нра вится подростку, может совершенно вывести из себя человека в возрасте. Как же врачи и специалисты по акустике определяют уровень шума? Для измерения интенсивности звука в слуховом восприятии принята международная шкала громкости, разделенная на 13 бел, или 130 децибел. По этой шкале нулю соответствует порог слышимости, 10 децибел - шепот низкой громкости, 20 децибел - шепот средней громкости, 40 децибел - тихий разговор, 50 децибел - разговор средней громкости, 70 децибел - шум пишущей машинки, 80 децибел - шум работающего двигателя грузового автомобиля, 100 децибел - громкий автомобильный сигнал на расстоянии 5-7 метров, 120 децибел - шум работающего трактора на расстоянии одного метра и, наконец, 130 децибел - порог болевого ощущения, то есть порог выносливости уха. Установлено, что максимальные величины, будто не влияющие на организм, равны 30-35 децибелам, однако при длительном воздействии такого шума у практически здоровых людей может дать <сбой> нервная система, что выражается, как правило, нарушением сна.
Медики настойчиво продолжают исследовать влияние шума на здоровье человека. Они, например, установили, что при повышении шума увеличивается выделение адреналина. Адреналин в свою очередь влияет на работу сердца и, в частности, способствует выделению свободных жирных кислот в кровь. Для этого достаточно человеку кратковременно находиться под воздействием шума интенсивностью 60-70 децибел. Шум более 90 децибел способствует более активному выделению кортизона. А это в определенной степени ослабляет способность печени бороться с вредными для организма веществами, в том числе и с теми, которые способствуют возникновению рака.
Оказалось, что шум вреден также и для зрения человека. К такому выводу пришла группа болгарских врачей, исследовавших эту проблему. Специалисты, участвовавшие в опытах, по нескольку*часов находились в затемненных камерах, куда постоянно транслировался записанный на магнитофонную пленку шум от работы станков и механизмов. При этом было установлено, что заметно уменьшается активность сетчатки глаза, от которой зависит работа глазных нервов, а следовательно, острота зрения. Итак, шум - очень неблагоприятное явление для человека, он заметно снижает производи-1ьность умственного и физического труда. Невозможно перечислить все техногенные источники шума, от которого требуется активная защита. Но если иметь в виду уличный шум современного большого города, то его основной источник установить не столь уж трудно - это транспорт, особенно неумолчно урчащие, а то просто ревущие автомобили. В некоторых крупных городах мира шум в дневное время достигает 120-130 децибел. В Западной Европе есть города, где в течение нескольких лет жители не могут днем работать, а ночью спать - над их домами непрерывно проносятся реактивные самолеты.
Возникает вопрос, можно ли бороться с шумами и как?
В Советском Союзе борьбе с шумом, улучшению акустических условий оказывается повсеместное внимание. Самолетам, как правило, запрещено летать над городами. Шумные предприятия либо изолируют от жилых районов зелеными насаждениями, либо стараются и* вывести за городскую черту. В новых районах строят широкие проспекты, где звуки больше поглощаются, не отражаясь многократно от стен домов. В населенных пунктах запрещены звуковые сигналы всех видов транспорта (исключения оговариваются правилами дорожного движения).
Растения - хороший гаситель шума. Деревья и кустарники снижают шум на 5, 10, а иногда и на 20 деци бел. Безусловно, что эффективность зеленых насаждений зависит от их планировки и пород деревьев. Эффективны зеленые полосы между тротуаром и мостовой. На широких улицах со значительным движением транспорта рекомендуется создавать рядом с тротуарами аллеи шириной 10-12 метров. Лучше всего гасят шум липы цели.
Ели поглощают уличный шум в такой степени, что жители домов, находящихся позади такого хвойного за слона, едва ли не полностью избавляются от раздражающих шумов улицы большого города.
Специалисты, работающие в лаборатории строитель ной акустики Московского научноисследовательского института типового и экспериментального проектирования /МНИИТЭП/, предложили так называемые шумозащитные окна для жилых помещений. Они обеспечиваю снижение шума в квартирах на 44 децибела (обычно окно снижает уличный шум всего примерно на 22 децибела). Окна снабжены клапанами-глушителями, благодаря которым обеспечивается доступ свежего воздуха в помещение без существенного ухудшения противошумовой защиты.
На промышленных предприятиях тоже ведется настойчивая борьба с шумом. Для этого применяются индивидуальные средства защиты - <противошумы> и <антифоны> различной конструкции, снижающие на 30-50 процентов уровень высококачественного шума. Более эффективный путь к уменьшению шума - использование разнообразных средств звукоизоляции, звукопоглощающих покрытий.
Хороший почин в борьбе с шумом сделан на Ермолинском хлопчатобумажном объединении. Наступление на децибелы началось здесь несколько лет назад. Сотрудники Института гигиены труда и профзаболеваний АМН СССР предложили использовать звукопоглощающие подвесные плиты - кулисы. Немало пришлось поработать ученым-гигиенистам вместе с инженерами, чтобы стали максимально эффективными эти акустические ловушки. На первых порах, например, стены облицовывали плоскими плитами. Затем стали их делать волнистыми, что дало еще больший эффект, нашли оптимальный вариант размещения кулис. Результат налицо - уровень шума снижен более чем вдвое, производительность труда повысилась, а заболеваемость ткачих уменьшилась на 30 процентов. Ермолинский вариант борьбы с шумом взят на вооружение московским шелковым комбинатом имени Розы Люксембург <Красная Роза>, столичной ткацкой фабрикой <Красные текстильщики>, Раменским текстильным комбинатом и др.
Еще один путь борьбы с шумом - это замена физически изношенной и морально устаревшей техники более совершенной. Можно также применить хорошо организованный и высококачественный ремонт и модернизацию промышленного оборудования и другие меры.
Можно быть уверенным, что проблема борьбы с промышленными шумами будет в конце концов решена, ибо этого требуют социальные и экономические интересы общества.
Нормативно-технической основой комплексного решения этой проблемы является стандартизация, целенаправленная и планомерная деятельность, призванная стРого регламентировать все факторы, так или иначе порождающие шум, и установить методы и способы защиты от него. Именно этим занимаются специалисты стран - членов Совета Экономической Взаимопомощи, они разрабатывают стандарты тишины на производстве и в быту. При этом обязательно учитывается опыт, накопленный в той или иной стране, в той или иной отрасли народного хозяйства. Каждый стандарт СЭВ представляет собой синтез опыта и современных научных достижений и целиком ориентирован на использование прогрессивной техники и технологии.
Венгерские специалисты разработали стандарт <Допустимые уровни звукового давления в жилых и общественных зданиях>. Этот документ устанавливает ряд акустических пределов, благодаря которым понятие тишины обретает количественное выражение. Так, напри-! мер, тишина в квартире, по мнению медиков, участвовавших в разработке стандарта,- это 40 децибел днем и 30 децибел ночью. Для сравнения: 25 децибел дает шелест листвы на умеренном ветру, 30 децибел - тиканье часов на расстоянии 1 метра, 75-80 децибел - шум на улице небольшого города.
Ведется работа над стандартом, который установит1 предельно допустимый уровень шума в районе жилищных застроек, местах отдыха и детских игр. Нормы, заложенные в этот стандарт, будут обязательны для проектировщиков и строителей.
Разумеется, чтобы эффективно бороться с шумом; надо уметь его измерять. Но не только, нужны еще единые методы измерения и оценки. Именно это предполагается обосновать новым стандартом СЭВ на методы измерения шумов, создаваемых транспортными потоками] на улицах больших городов.
При СЭВ есть постоянная комиссия с рабочей груп-1 пой по охране труда, она координирует работу по стандартизации, ведущуюся в странах СЭВ. В 1976 году были утверждены технические нормы, ограничивающие шум на предприятиях текстильной промышленности, гд как известно, работают преимущественно женщины.
Средства и методы защиты от шума классифицирует стандарт, разработанный советскими специалистам Л стандарт, содержащий общие требования к метода измерения шума, создали специалисты ЧССР. Специалисты ГДР обосновали стандарт СЭВ <Допустимые уро ни шума на рабочих местах>, согласно которому уровень шума отныне не должен превышать 85 децибел. Конечно, это еще далеко не идеальные условия, о которых мечтают гигиенисты, тем не менее и снижение производственного шума до этого уровня на всех без исключения предприятиях привело бы к значительному оздоровлению условий труда.
Работа по стандартизации, имеющей целью борьбу с шумом, продолжается. Так, постоянная комиссия СЭВ возложила на специалистов СССР разработку проекта долгосрочной программы, направленной на всестороннюю защиту человека от вредного воздействия шума.
При слове <музыка> мы тотчас представляем себе вид искусства, специфически - с помощью звуковых художественных образов - отражающего действительность и столь же специфически воздействующего на людей - на их психику и эмоции.
К тому, что музыка - это многообразный мир особым образом организованных звуков, благодаря чему она способна выражать с достаточной полнотой эмоциональные переживания людей, их душевное состояние, мы давно привыкли. При этом как-то забывается, что к ней применимы все те характеристики, которые установлены и измерены физиками при изучении звуков вообще. Приложимы, однако, с учетом ее особенностей, потому-то она является объектом изучения не акустики вообще, а музыкальной акустики - науки, родившейся на стыке акустики, музыковедения, психологии и физиологии. Ведь музыкальный язык - это, можно сказать, очеловеченный звук и по своему происхождению, и по своему назначению.
Но еще с большим правом то же самое мы можем сказать о звуках, из которых складывается наш язык, неразрывно связанный, с мышлением, сознанием.
Таким образом, шум, музыка, звуковая речь - это как бы ступени лестницы, ведущей ко все большей и большей организованности, упорядоченности в мире звуков, ко все большей их информативности.

"Звук, ультразвук, инфразвук"

Звук характеризуется двумя параметрами - частотой и интенсивностью . Ваш порог слуха - это то, каким громким должен быть звук определенной частоты, чтобы вы его услышали.

Частота звука (высокий звук или низкий) измеряется количеством колебаний в секунду (Гц). Ухо человека обычно может воспринимать звуки от очень низкого, 16 Гц, до высокого, 20 000 Гц. В среднем нормальных речь в тихом помещении воспринимается в частотном диапазоне от 500 до 2 000 Гц.

Интенсивность или громкость звука зависит прежде всего от амплитуды колебания воздуха и измеряется в децибелах (дБ). Порог минимальной громкости для нормального слуха составляет от 0 до 25 дБ. Для детей порогом нормального слуха считается диапазон от 0 до 15 дБ. Слух считается хорошим, если порог минимальной громкости для обоих ушей находится в этом диапазоне.

Ухо воспринимает механические колебания, которые создает звуковая волна, переводя их в электрические импульсы, чтобы передать через проводящие пути в центры коры головного мозга, где полученная информация обрабатывается и формируется понимание (осмысление) услышанного.

Ухо состоит из трех частей: наружное ухо, среднее ухо, и внутреннее ухо.

  • Наружное ухо - ушная раковина, которая собирает звук, направляя его по наружному слуховому проходу к барабанной перепонке. Барабанная перепонка отделяет наружное ухо от среднего. Вибрирующие звуки приводят в движение барабанную перепонку.
  • Среднее ухо - это набор косточек (молоточек, наковальня и стремечко ). Механическое движение барабанной перепонки передается посредством маленьких подвижных слуховых косточек к меньшей мембране, отделяющей среднее ухо от внутреннего.
  • Внутреннее ухо - непосредственно "улитка". Колебания внутренней мембраны уха перемещает жидкость, содержавшуюся в «улитке». Жидкость, в свою очередь, приводит в движение волосковые клетки, стимулируя окончания слухового нерва, по которому информация поступает в готовной мозг.
  • Дополнительно три заполненных жидкостью канала внутреннего уха (полукружные каналы) обнаруживают изменения положения тела. Этот механизм вместе с другими сенсорными приспособлениями является ответственным за баланс или положение тела.

Ниже Вы можете видеть схематичный вид уха и увеличенного слухового аппарата.

Что Вы должны предпринять, если считаете, что нуждаетесь в слуховом аппарате?

Если Вы думаете, что имеете проблему снижения слуха, обратитесь к врачу-сурдологу, чтобы исследовать слух и определить показания и противопоказания к использованию слухового аппарата.

Если Вам показан слуховой аппарат, врач-сурдолог поможет Вам выбрать оптимальную модель, а также запрограммирует ее с учетом особенностей Вашей потери слуха. При выборе слухового аппарата учитывается не только степень и особенности частотной неравномерности тугоухости, но и другие факторы.

В большинстве случаев предпочтительно одновременное использование двух слуховых аппаратов (бинауральный слух). Однако есть ситуации, когда бинауральное слухопротезирование не показано.

В этом случае врач-сурдолог поможет Вам определить, на каком ухе предпочтительнее носить слуховой аппарат.