Общее уравнение шредингера формула. Обще уравнение Шредингера

(YСтатистическое толкование волн де Бройля (см. § 216) и соотношение неопределен­ностей Гейзенберга (см. § 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции х ,у, z, t), |Yтак как именно она, или, точнее, величина | 2 , определяет вероятность пребывания частицы в момент времениt в объемеdV, т. е. в области с координатамих иx+dx, у иy+dy, z иz+dz .Taк как искомое уравнение должно учитывать волновые свойства частиц, то оно должно бытьволновым уравнением , подобно уравнению, описывающему электромагнитные волны.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвел­ла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью резуль­татов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредин­гера имеет вид

где ћ =h ),p/(2т- -оператор ЛапласаDмасса частицы, i - мнимая единица,U (х, у, z, t) - Yпотенциальная функция частицы в силовом поле, в котором она движется,(х, у, z, t) - искомая волновая функция частицы.

Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v <<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волно­вая функция должна быть конечной, однозначной и непрерывной (см. § 216); 2) производные |Yдолжны быть непрерывны; 3) функция | 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, кото­рой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномер­ный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154) , или в комплексной записи . Следовательно, плоская волна деБройля имеет вид

(учтено, что w = E/ћ, k=p/ћ |Y). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только | 2 , то это (см. (217.2)) несущественно. Тогда

Используя взаимосвязь между энергией Е и импульсомр (E=p 2 /(2m)) и подставляя выражения (217.3), получим дифференциальное уравнение



которое совпадает с уравнением (217.1) для случая U= 0 (мы рассматривали свободную частицу). Если частица движется в силовом поле, характеризуемом потенциальной энергиейU, то полная энергияЕ складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения и используя взаимосвязь междуЕ и р (для данного случаяp 2 /(2m )=E–U ), прядем к дифференциальному уравнению, совпадающему с (217.1).

Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к кото­рым оно приводит.

Уравнение (217.1) является общим уравнением Шредингера . Его также называютуравнением Шредингера, зависящим от времени от времени, иными словами, найти уравнение Шредингера дляY. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимостьстационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функцияU=U(x, у, z) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем , так что

где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

откуда после деления на общий множитель и соответствующих преобразований придем к уравнению, определяющему функциюy:



Уравнение (217.5) называетсяуравнением Шредингера для стационарныхсостояний . В это уравнение в качестве параметра входит полная энергияЕ частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчис­ленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциямиy . Но регулярные решения имеют место не при любых значениях параметраЕ, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называютсясобствен­ными. Решения же, которые соответствуютсобственным значениям энергии, называют­сясобственными функциями. Собственные значенияЕ могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят онепрерывном , илисплошном ,спектре , во втором -о дискретном спектре .

Модель атома Томсона и Резерфорда.

Представление об атомах как неделимых мельчайших частиц вещества возникло в Античные времена(Демокрит, Эпикур, Лукреций) К началу 18 века атомистическая теория приобретает все большую популярность, так как к этому времени в работах А.Лавуазье, М.В Ломоносова и Д.Дальтона была доказана реальность существования атомов. Однако вопрос о внутреннем строении атомов даже не возникал, так как атомы по проежнему считались не делимыми. Большую роль в развитии атомистической модели сыграл Менделеев разработавший в 1869 году Периодическую систему элементов, в которой впервые на научной основе был поставлен вопрос о единой природе атомов. Во второй половине 19 в экспериментально доказано, что эдекторон являеется одной из основных составных частей любого вещества. Эти выводы а также экспериментальные данные привели к тому что в начале 20 века серьездно встанр вопрос о строении атома. Первая попытка создания на основе накопленных экспериментальных даннных о модели атома принадлежит Томсану. Согласно этой модели атом представляет собой непрерывно заряженный положительным зарядом шар радиусом порядка м внутри которого около своих положений равновесия колеблются электроны суммарный заряд электронов равен положительному заряду шара, поэтому атом нейтрален. Через несколько лет было доказано, что представление о непрерывно распределенном внутри атома положительном заряде ошибочно.

В развитии представлений о строении атома велико значение опытов английского физика Резерфорда по рассеянию альфа частиц в веществе. Альфа частицы возникают при радтоактивных превращения, они являются положительно заряженными частицами с зарядом 2е и массой примерно 7300 раз большей массы электрона. Пучки альфа частиц обладают высокой монохроматичностью. на основании своих исследований Резерфорд в 1911г предложил ядерную (планетарную) модель атома. Согласно этой модели, вокруг положительного заряда, имеющийся заряд Ze (Z- порядковый номер элемента в системе Менделеева е – элементарный заряд размер - и массу практически равную массе атома,в области с линейными размерами порядка м по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Так как атомы нейтральны, то заряд равен суммарному заряду электронов, т.е вокруг ядра должно превращаться Z электронов. Для простоты предположим, что электрон движется вокруг ядра по круговой орбите радиусом r . При этом кулоноская сила взаимодествия между ядром и электроном сообщает электрону нормальное ускорение. Уравнение описывающее движение электрона в атоме по окружности под действием кулоновской силы = где ε0-электрическая постоянная me-и v-масса и скорость электрона на орбите радиусом r. Уравнение содержит два неизвестных r и v. Следовательно, существует бесчисленное множество значений радиуса и соответсвующих ему значений скорости, удовлетворяющих этому уравнению. Поэтому величины r и v могут меняться непрерывно, т.е может испускаться любая, а не вполне определенная порция энергии. Тогда спектры атомов должны быть сплошными. В действительности же опыт показывает, что атомы имеют линейчатый спектр. Согласно классической электродинамике, ускоренно движущиеся электроны должны излучать электромагнитные волны и вследствие этого непрерывно терять энергию. В результате электроны будут приближаться к ядру и в конце концов упадут на него. Таким образом, атом Резерфорда оказывается неустойчивой системой, что опять –таки противоречит действительности. Попытки построить модель атома в рамках классической физики не привели к успеху модель томсона была опровергнута опытами Резерфорда, ядерная же модель оказалась неустойчивой электодинамически противоречила опытным данным. Преодоление возникших трудностей потребовало создание качественно новой – квантовой теории атома

Линейчатый спектр водорода

Исследование спектров излучения заряженных газов показали каждому газу присущ определенный линейчатый спектр, состоящий из отдельных спиральных линий. Самым изученым являются спектр наиболее простого атома – атома водорода. Швецарский ученный Бальмер подобрал эмпирическую формулу описывающую все известные в то время спектральные линии атома водорода в видимой области спектра где Rштрих= -постоянная Ридберга. В дальнейшем в спектре атома водорода было обнаружено еще нескольких серий. В ультрафиолетовой области спектра находится серия Лаймана

В инфракрасной области спектра были также обнаружены

Серия Пашена

Серия Брэкета

v=R(1/4^2 -1/n^2) (n=5,6,7…...)

серия Пфунда

v=R(1/5^2 -1/n^2) (n=6,7,8…...)

серия Хемфри

v=R(1/6^2 -1/n^2) (n=7,8,9…...)

Все приведенные выше серии в спектре атома водорода могут быть описаны одной формулой называемой обобщенной формулой Бальмера где m имеет в кадой серии постоянное значение m=1,2,3,4,5,6(определяет серию) n, принемает целочисленные значения начиная с m+1 (определяет отдельные линии этой серии)

Постулаты Бора

Первая попытка построить качественно новую – квантовую теорию атома была предпринята в 1913 г датским физиком Нильсом Бором. Он поставил перед собой цель связать в единое целое эмпирические закономерности линейчатых спектров, ядерную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу своей теории Бор положил два постулата.

1 постулат (постулат стационарных состояний) в атоме существуют стационарные состояния в которых он не излучает энергии, эти состояния характеризуются определенными дискретными значениями энергии. Стационарные состояния атома соответстуют стационарные орбиты по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн. В стационарном состоянии атома электрпон двигаясь по круговой орбите, должен иметь дискретные квантовые значения момента импульса, удовлетворяющие условию

Где me-масса электрона v- скорость

2 постулат (правило частот) при переходе электрона с одной стационарной орбиты на другую излучается один фотон с энергией

Равной разностьи энергии соответствующих стационарных состояний E_m-соответственно энергии стационарных состояний атома до и после излучения. При - происходит излучение при - его поглощение.набор возможных дискретных частот квантовый переходов и определяет линейчатый спектр атома.

О. Штерн и В Герлах проводят прямые измерения магнитных моментов и обнаружили в 1922г что узкий пучок атомов водорода заведомо находящийся в s состоянии в неоднородном магнитном поле расщипляется на два пучка. В этом состоянии момент импульса электрона равен нулю. Магнитный момент атома связанный с орбитальным движением электрона, пропорционален механическому моменту, поэтому он равен нулю и магнитное поле не должно оказывать влияние на движение атомов водорода в основном состоянии, т.е расщипления не должно быть. однако в дальнейшем при применении спектральных приборов с большой разрешающей способностью было доказано, что спектральные линии атома водорода обнаруживают тонкую структуру, даже в отсутствии магнитного поля.Для объяснения тонкой структуры спектральных линий,а также ряда других трудностей в атомной физике Уленбек и Гаудсмит предложили, что электрон обладает собственным неуничтожимым механическим моментом импульса, не связанным с движение электрона в пространстве спином. Спин электрона –квантовая величина, у нее нет классического аналога, это внутреннее неотъемлемое свойство электрона подобное его массу и заряду. Если электрону приписывается собственный механический момент импульса то ему соответствует собственный магнитный момент Согласно общим выводам квантовой механике, спин квантуется по закону где s- спиновое квантовое число.

Уравнением движения микрочастицы в различных силовых полях является волновое уравнение Шредингера.

Для стационарных состояний уравнение Шредингера будет таким:

M – масса частицы, h – постоянная Планка, E – полная энергия, U – потенциальная энергия.

Уравнение Шредингера является дифференциальным уравнением второго порядка и имеет решение, которое указывает на то, что в атоме водорода полная энергия должна иметь дискретный характер:

Эта энергия находится на соответствующих уровнях n =1,2,3,…по формуле:

Самый нижний уровень E соответствует минимальной возможной энергии. Этот уровень называют основным, все остальные – возбужденными.

По мере роста главного квантового числа n энергетические уровни располагаются теснее, полная энергия уменьшается, и при n =E>0 электрон становится свободным, несвязанным с конкретным ядром, а атом – ионизированным.

Полное описание состояния электрона в атоме, помимо энергии, связано с четырьмя характеристиками, которые называются квантовыми числами. К ним относятся: главное квантовое число п, орбитальное квантовое число l, магнитное квантовое число m1, магнитное спиновое квантовое число ms.

трона в пространстве, то есть волновая функция в пространстве характеризуется тремя системами. Каждая из них имеет свои квантовые числа: п, l, ml.

Каждой микрочастице, в том числе и электрону, также свойственно собственное внутреннее сложное движение. Это движение может характеризоваться четвертым квантовым числом ms. Поговорим об этом подробнее.

A. Главное квантовое число п, согласно формуле, определяет энергетические уровни электрона в атоме и может принимать значения п = 1, 2, 3…

Б. Орбитальное квантовое число /. Из решения уравнения Шредингера следует, что момент импульса электрона (его механический орбитальный момент) квантуется, то есть принимает дискретные значения, определяемые формулой

где Ll – момент импульса электрона на орбите, l – орбитальное квантовое число, которое при заданном п принимает значение i = 0, 1, 2… (n – 1) и определяет момент импульса электрона в атоме.B. Магнитное квантовое число ml.

Из решения уравнения Шредингера следует также, что вектор Ll (момент импульса электрона) ориентируется в пространстве под влиянием внешнего магнитного поля. При этом вектор развернется так, что его проекция на направление внешнего магнитного поля будет

где ml называется магнитным квантовым числом, которое может принимать значения ml = 0, ±1, ±2,±1, то есть всего (2l + 1) значений.

Учитывая сказанное, можно сделать заключение о том, что атом водорода может иметь одно и то же значение энергии, находясь в нескольких различных состояниях (n – одно и то же, а l и ml– разные).

При движении электрона в атоме электрон заметно проявляет волновые свойства. Поэтому квантовая электроника вообще отказывается от классических представлений об электронных орбитах. Речь идет об определении вероятного места нахождения электрона на орбите, то есть местонахождение электрона может быть представлено условным «облаком». Электрон при своем движении как бы «размазан» по всему объему этого «облака». Квантовые числа n и l характеризуют размер и форму электронного «облака», а квантовое число ml– ориентацию этого «облака» в пространстве.

В 1925 г. американские физики Уленбек и Гаудсмит доказали, что электрон также обладает собственным моментом импульса (спином), хотя мы не считаем электрон сложной микрочастицей. Позднее выяснилось, что спином обладают протоны, нейтроны, фотоны и другие элементарные частицы

Опыты Штерна, Герлаха и других физиков привели к необходимости характеризовать электрон (и микрочастицы вообще) добавочной внутренней степенью свободы. Отсюда для полного описания состояния электрона в атоме необходимо задавать четыре квантовых числа: главное – п, орбитальное – l, магнитное – ml, магнитное спиновое число – ms.

В квантовой физике установлено, что так называемая симметрия или асимметрия волновых функций определяется спином частицы. В зависимости от характера симметрии частиц все элементарные частицы и построенные из них атомы и молекулы делятся на два класса. Частицы с полуцелым спином (например, электроны, протоны, нейтроны) описываются асимметричными волновыми функциями и подчиняются статистике Ферми-Дирака. Эти частицы называются фермионами. Частицы с целочисленным спином, в том числе и с нулевым, такие как фотон (Ls =1) или л-мезон (Ls = 0), описываются симметричными волновыми функциями и подчиняются статистике Бозе– Эйнштейна. Эти частицы называются бозонами. Сложные частицы (например, атомные ядра), составленные из нечетного числа фермионов, также являются фермионами (суммарный спин – полуцелый), а составленные из четного – бозонами (суммарный спин – целочисленный).

Если перейти от рассмотрения движения одной микрочастицы (одного электрона) к многоэлектронным системам, то проявляются особые свойства, не имеющие аналогов в классической физике. Пусть квантово-механическая система состоит из одинаковых частиц, например электронов. Все электроны имеют одинаковые физические свойства – массу, электрический заряд, спин и другие внутренние характеристики (например квантовые числа). Такие частицы называют тождественными.

Необходимые свойства системы одинаковых тождественных частиц проявляются в фундаментальном принципе квантовой механики – принципе неразличимости тождественных частиц, согласно которому невозможно экспериментально различить тождественные частицы.

В классической механике даже одинаковые частицы можно различить по положению в пространстве и импульсам. Если частицы в какой-то момент времени пронумеровать, то в следующие моменты времени можно проследить за траекторией любой из них. Классические частицы, таким образом, обладают индивидуальностью, поэтому классическая механика систем из одинаковых частиц принципиально не отличается от классической механики систем из различных частиц.

В квантовой механике положение иное. Из соотношения неопределенности вытекает, что для микрочастиц вообще неприменимо понятие траектории; состояние микрочастицы описывается волновой функцией, позволяющей лишь вычислять вероятность нахождения микрочастицы в окрестностях той или иной точки пространства. Если же волновые функции двух тождественных частиц в пространстве перекрываются, то разговор о том, какая частица находится в данной области, вообще лишен смысла: можно говорить лишь о вероятности нахождения в данной области одной из тождественных частиц. Таким образом, в квантовой механике тождественные частицы полностью теряют свою индивидуальность и становятся неразличимыми. Следует подчеркнуть, что принцип неразличимости тождественных частиц не является просто следствием вероятной интерпретации волновой функции, а вводится в квантовую механику как новый принцип, как указывалось выше, является фундаментальным.

Принимая во внимание физический смысл величины, принцип неразличимости тождественных частиц можно записать в следующем виде: , (8.1.1)

где и – соответственно, совокупность пространственных и силовых координат первой и второй частиц. Из выражения (8.1.1) вытекает, что возможны два случая:

т.е. принцип неразличимости тождественных частиц ведет к определенному свойству симметрии волновой функции. Если при перемене частиц местами волновая функция не меняет знака, то она называется симметричной, если меняет – антисимметричной. Изменение знака волновой функции не означает изменения состояния, т.к. физический смысл имеет лишь квадрат модуля волновой функции.

В квантовой механике доказывается, что характер симметрии волновой функции не меняется со временем. Это не является доказательством того, что свойства симметрии или антисимметрии – признак данного типа микрочастиц.

Установлено, что симметрия или антисимметрия волновых функций определяется спином частиц. В зависимости от характера симметрии все элементарные частицы и построенные из них системы (атомы, молекулы) делятся на два класса: частицы с полуцелым спином (например электроны, нейтроны и протоны) описываются антисимметричными волновыми функциями и подчиняются статистике Ферми–Дирака; эти частицы называются фермионами. Частицы с нулевым, или целочисленным, спином (например фотоны, мезоны) описываются симметричными функциями (волновыми) и подчиняются статистике Бозе–Эйнштейна; эти частицы называются бозонами.

Сложные частицы (например атомные ядра), составленные из нечетного числа фермионов, являются фермионами (суммарный спин – полуцелый), а из четного – бозонами (суммарный спин – целый).

Зависимость характера симметрии волновых функций системы тождественных частиц от спина частиц теоретически обоснована швейцарским физиком В. Паули, что явилось еще одним доказательством того, что спины являются фундаментальной характеристикой микрочастиц.

Взучив свойства элементов, расположенных в ряд по возрастанию значений их атомных масс, великий русский ученый Д.И. Менделеев в 1869 г. вывел закон периодичности:

свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от величины атомных весов элементов.

Согласно этому закону изменение свойств химических элементов по мере возрастания их атомных масс имеет периодический характер, т.е. через определенное число элементов (разное для различных периодов) свойства элементов повторяются в той же последовательности, хотя и с некоторыми качественными и количественными различиями. Лишь в трех случаях Менделеев нарушил порядок следования элементов - поставил аргон впереди калия, кобальт впереди никеля, а теллур впереди иода. Этого требовало сходство свойств химических элементов.

Графическим отображением периодического закона является таблица элементов Д.И. Менделеева. Каждому элементу в ней отвечает порядковый, номер. В таблице весь ряд элементов разбит на отдельные отрезки, внутри которых начинаются и заканчиваются циклы периодического изменения свойств. Вертикальные отрезки называются группами, а горизонтальные периодами.

Первые три периода, содержащие 2, 8 и 8 элементов называются малыми, остальные, содержащие 18, 18 и 32 элемента большими. Большие периоды подразделяются на ряды, малые же периоды совпадают с соответствующими рядами.

В каждой группе элементы больших периодов подразделяются на две подгруппы - главную и побочную. К главной подгруппе относятся сходные элементы, включающие элементы малых и больших периодов. К побочной подгруппе относятся сходные элементы, включающие только элементы больших периодов. Максимально возможная валентность элементов в группе равна номеру группы. Хотя некоторые элементы и не проявляют максимальной валентности, например, кислород, фтор, неон, с другой стороны валентность золота - элемента побочной подгруппы I группы может превышать единицу, она достигает трех.

Открытие Периодического закона побудило физиков искать его объяснение с позиций теории строения атомов и наоборот Периодический закон стал средством проверки истинности предлагаемых моделей строения атомов.

Основываясь на открытии Дж. Томсоном в 1897 г. электрона, английский физик Э. Резерфорд в 1911 г. предположил, что атом состоит из положительно заряженного ядра и вращающихся вокруг него по круговым орбитам электронов. При этом положительный заряд ядра нейтрализуется суммарным отрицательным зарядом электронов, что делает атом в целом электронейтральным. Резерфорд экспериментально доказал, что заряд ядра численно равен порядковому номеру элемента в периодической системе.

Только тогда удалось объяснить причину нарушения порядка следования элементов в таблице Менделева (аргон впереди калия, кобальт впереди никеля, а теллур впереди иода). Перечисленные элементы оказались расставлены в соответствии с изменением зарядов их ядер. Таким образом, оказалось, что основной величиной, от которой зависят свойства элемента является заряд ядра. Отсюда следует и современная формулировка периодического закона Менделеева:

Свойства химических элементов, а также формы и свойства соедине ний элементов находятся в периодической зависимости от заряда их ядер.

Движение микрочастиц в различных силовых полях описывается в рамках нерелятивистской квантовой механики с помощью уравнения Шредингера, из которого вытекают наблюдаемые на опыте волновые свойства частиц. Это уравнение, как и все основные уравнения физики, не выводятся, а постулируется. Его правильность подтверждается согласием результатов расчета с опытом. Волновое уравнение Шредингера имеет следующий общий вид :

- (ħ 2 / 2m) ∙ ∆ψ + U (x, y, z, t) ∙ ψ = i ∙ ħ ∙ (∂ψ / ∂t)

где ħ = h / 2π, h = 6,623∙10 -34 Дж ∙ с - постоянная Планка;
m - масса частицы;
∆ - оператор Лапласа (∆ = ∂ 2 / ∂x 2 + ∂ 2 / ∂y 2 + ∂ 2 / ∂z 2);
ψ = ψ (x, y, z, t) - искомая волновая функция;
U (x, y, z, t) - потенциальная функция частицы в силовом поле, где она движется;
i - мнимая единица.

Это уравнение имеет решение лишь при условиях, накладываемых на волновую функцию:

  1. ψ (x, y, z, t) должна быть конечной, однозначной и непрерывной;
  2. первые производные от нее должны быть непрерывны;
  3. функция | ψ | 2 должна быть интегрируема, что в простейших случаях сводится к условию нормировки вероятностей.
Для многих физических явлений, происходящих в микромире, уравнение (8.1) можно упростить, исключив зависимость ψ от времени, т.е. найти уравнение Шредингера для стационарных состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т.е. U = U (x, y, z) не зависит явно от времени и имеет смысл потенциальной энергии. Тогда после преобразований можно прийти к уравнению Шредингера для стационарных состояний:

∆ψ + (2m / ħ 2) ∙ (E - U) ∙ ψ = 0

где ψ = ψ (x, y, z) - волновая функция только координат;
E - параметр уравнения - полная энергия частицы.

Для этого уравнения реальный физический смысл имеют лишь такие решения, которые выражаются регулярными функциями ψ (называемыми собственными функциями), имеющими место только при определенных значениях параметра E, называемого собственным значением энергии. Эти значения E могут образовывать как непрерывный, так и дискретный ряд, т.е. как сплошной, так и дискретный спектр энергий.

Для какой-либо микрочастицы при наличии уравнения Шредингера типа (8.2) задача квантовой механики сводится к решению этого уравнения, т.е. нахождению значений волновых функций ψ = ψ (x, y, z), соответствующих спектру собственных энергией E. Далее находится плотность вероятности | ψ | 2 , определяющая в квантовой механике вероятность нахождения частицы в единичном объеме в окрестности точки с координатами (x, y, z).

Одним из простейших случаев решения уравнения Шредингера является задача о поведении частицы в одномерной прямоугольной "потенциальной яме" с бесконечно высокими "стенками". Такая "яма" для частицы, движущейся только вдоль оси Х, описывается потенциальной энергией вида

где l - ширина "ямы", а энергия отсчитывается от ее дна (рис. 8.1).

Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде:

∂ 2 ψ / ∂x 2 + (2m / ħ 2) ∙ (E - U) ∙ ψ = 0

В силу того, что "стенки ямы" бесконечно высокие, частица не проникает за пределы "ямы". Это приводит к граничным условиям:

ψ (0) = ψ (l) = 0

В пределах "ямы" (0 ≤ x ≤ l) уравнение (8.4) сводится к виду:

∂ 2 ψ / ∂x 2 + (2m / ħ 2) ∙ E ∙ ψ = 0

∂ 2 ψ / ∂x 2 + (k 2 ∙ ψ) = 0

где k 2 = (2m ∙ E) / ħ 2


Решение уравнения (8.7) с учетом граничных условий (8.5) имеет в простейшем случае вид:

ψ (x) = A ∙ sin (kx)


где k = (n ∙ π)/ l

при целочисленных значениях n.

Из выражений (8.8) и (8.10) следует, что

E n = (n 2 ∙ π 2 ∙ ħ 2) / (2m ∙ l 2) (n = 1, 2, 3 ...)


т.е. энергия стационарных состояний зависит от целого числа n (называемого квантовым числом) и имеет определенные дискретные значения, называемые уровнями энергии.

Следовательно, микрочастица в "потенциальной яме" с бесконечно высокими "стенками" может находится только на определенном энергетическом уровне E n , т.е. в дискретных квантовых состояниях n.

Подставив выражение (8.10) в (8.9) найдем собственные функции

ψ n (x) = A ∙ sin (nπ / l) ∙ x


Постоянная интегрирования А найдется из квантовомеханического (вероятностного) условия нормировки

которое для данного случая запишется в виде:

Откуда в результате интегрирования получим А = √ (2 / l) и тогда имеем

ψ n (x) = (√ (2 / l)) ∙ sin (nπ / l) ∙ x (n = 1, 2, 3 ...)

Графики функции ψ n (х) не имеют физического смысла, тогда как графики функции | ψ n | 2 показывают распределение плотности вероятности обнаружения частицы на различных расстояниях от "стенок ямы"(рис. 8.1). Как раз эти графики (как и ψ n (х) - для сравнения) изучаются в данной работе и наглядно показывают, что представления о траекториях частицы в квантовой механике несостоятельны.

Из выражения (8.11) вытекает, что энергетический интервал между двумя соседними уровнями равен

∆E n = E n-1 - E n = (π 2 ∙ ħ 2) / (2m ∙ l 2) ∙ (2n + 1)

Отсюда видно, что для микрочастиц (типа электрона) при больших размерах "ямы" (l≈ 10 -1 м), энергетические уровни располагаются настолько тесно, что образуют практически непрерывный спектр. Такое состояние имеет место, например, для свободных электронов в металле. Если же размеры "ямы" соизмеримы с атомными (l ≈ 10 -10 м), то получается дискретный спектр энергии (линейчатый спектр). Эти виды спектров также могут быть изучены в данной работе для различных микрочастиц.

Другим случаем поведения микрочастиц (как, впрочем, и микросистем - маятников), часто встречаемым на практике (и рассматриваемым в этой работе), является задача о линейном гармоническом осцилляторе в квантовой механике.

Как известно, потенциальная энергия одномерного гармонического осциллятора массой m равна

U (x) = (m ∙ ω 0 2 ∙ x 2)/ 2

где ω 0 - собственная частота колебаний осциллятора ω 0 = √ (k / m);
k - коэффициент упругости осциллятора.

Зависимость (8.17) имеет вид параболы, т.е. "потенциальная яма" в данном случае является параболической (рис. 8.2).



Квантовый гармонический осциллятор описывается уравнением Шредингера (8.2), учитывающим выражение (8.17) для потенциальной энергии. Решение этого уравнения записывается в виде :

ψ n (x) = (N n ∙ e -αx2 / 2) ∙ H n (x)

где N n - постоянный нормирующий множитель, зависящий от целого числа n;
α = (m ∙ ω 0) / ħ;
H n (x) - полином степени n, коэффициенты которого вычисляются при помощи рекуррентной формулы при различных целочисленных n.
В теории дифференциальных уравнений можно доказать, что уравнение Шредингера имеет решение (8.18) лишь для собственных значений энергии:

E n = (n + (1 / 2)) ∙ ħ ∙ ω 0


где n = 0, 1, 2, 3... - квантовое число.

Это значит, что энергия квантового осциллятора может принимать лишь дискретные значения, т.е. квантуется. При n = 0 имеет место E 0 = (ħ ∙ ω 0) / 2, т.е. энергия нулевых колебаний, что является типичным для квантовых систем и представляет собой прямое следствие соотношения неопределенности.

Как показывает детальное решение уравнения Шредингера для квантового осциллятора , каждому собственному значению энергии при разных n соответствует своя волновая функция, т.к. от n зависит постоянный нормирующий множитель

а также H n (x) - полином Чебышева-Эрмита степени n.
При том первые два полинома равны:

H 0 (x) = 1;
H 1 (x) = 2x ∙ √ α

Любой последующий полином связан с нми по следующей рекуррентной формуле:

H n+1 (x) = 2x ∙ √ α ∙ H n (x) - 2n ∙ H n-1 (x)

Собственные функции типа (8.18) позволяют найти для квантового осциллятора плотность вероятности нахождения микрочастицы как | ψ n (х) | 2 и исследовать ее поведение на различных уровнях энергии. Решение этой задачи затруднительно ввиду необходимости использования рекуррентной формулы. Эта задача успешно может решаться лишь с использованием ЭВМ, что и делается в настоящей работе.

1. Введение

Квантовая теория родилась в 1900 г., когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым этим телом излучением - вывод, который долгое время ускользал от других ученых, Как и его предшественники, Планк предположил, что излучение испускают атомные осцилляторы, но при этом считал, что энергия осцилляторов (и, следовательно, испускаемого ими излучения) существует в виде небольших дискретных порций, которые Эйнштейн назвал квантами. Энергия каждого кванта пропорциональна частоте излучения. Хотя выведенная Планком формула вызвала всеобщее восхищение, принятые им допущения оставались непонятными, так как противоречили классической физике.

В 1905 г. Эйнштейн воспользовался квантовой теорией для объяснения некоторых аспектов фотоэлектрического эффекта - испускания электронов поверхностью металла, на которую падает ультрафиолетовое излучение. Попутно Эйнштейн отметил кажущийся парадокс: свет, о котором на протяжении двух столетий было известно, что он распространяется как непрерывные волны, при определенных обстоятельствах может вести себя и как поток частиц.

Примерно через восемь лет Нильс Бор распространил квантовую теорию на атом и объяснил частоты волн, испускаемых атомами, возбужденными в пламени или в электрическом заряде. Эрнест Резерфорд показал, что масса атома почти целиком сосредоточена в центральном ядре, несущем положительный электрический заряд и окруженном на сравнительно больших расстояниях электронами, несущими отрицательный заряд, вследствие чего атом в целом электрически нейтрален. Бор предположил, что электроны могут находиться только на определенных дискретных орбитах, соответствующих различным энергетическим уровням, и что "перескок" электрона с одной орбиты на другую, с меньшей энергией, сопровождается испусканием фотона, энергия которого равна разности энергий двух орбит. Частота, по теории Планка, пропорциональна энергии фотона. Таким образом, модель атома Бора установила связь между различными линиями спектров, характерными для испускающего излучение вещества, и атомной структурой. Несмотря на первоначальный успех, модель атома Бора вскоре потребовала модификаций, чтобы избавиться от расхождений между теорией и экспериментом. Кроме того, квантовая теория на той стадии еще не давала систематической процедуры решения многих квантовых задач.

Новая существенная особенность квантовой теории проявилась в 1924 г., когда де Бройль выдвинул радикальную гипотезу о волновом характере материи: если электромагнитные волны, например свет, иногда ведут себя как частицы (что показал Эйнштейн), то частицы, например электрон при определенных обстоятельствах, могут вести себя как волны. В формулировке де Бройля частота, соответствующая частице, связана с ее энергией, как в случае фотона (частицы света), но предложенное де Бройлем математическое выражение было эквивалентным соотношением между длиной волны, массой частицы и ее скоростью (импульсом). Существование электронных волн было экспериментально доказано в 1927 г. Клинтоном Дэвиссоном и Лестером Джермером в Соединенных Штатах и Джоном-Паджетом Томсоном в Англии.

Под впечатлением от комментариев Эйнштейна по поводу идей де Бройля Шрёдингер предпринял попытку применить волновое описание электронов к построению последовательной квантовой теории, не связанной с неадекватной моделью атома Бора. В известном смысле он намеревался сблизить квантовую теорию с классической физикой, которая накопила немало примеров математического описания волн. Первая попытка, предпринятая Шрёдингер в 1925 г., закончилась неудачей.

Скорости электронов в теории II Шрёдингер были близки к скорости света, что требовало включения в нее специальной теории относительности Эйнштейна и учета предсказываемого ею значительного увеличения массы электрона при очень больших скоростях.

Одной из причин постигшей Шрёдингер неудачи было то, что он не учел наличия специфического свойства электрона, известного ныне под названием спина (вращение электрона вокруг собственной оси наподобие волчка), о котором в то время было мало известно.

Следующую попытку Шрёдингер предпринял в 1926 г. Скорости электронов на этот раз были выбраны им настолько малыми, что необходимость в привлечении теории относительности отпадала сама собой.

Вторая попытка увенчалась выводом волнового уравнения Шрёдингера, дающего математическое описание материи в терминах волновой функции. Шрёдингер назвал свою теорию волновой механикой. Решения волнового уравнения находились в согласии с экспериментальными наблюдениями и оказали глубокое влияние на последующее развитие квантовой теории.

Незадолго до того Вернер Гейзенберг, Макс Борн и Паскуаль Иордан опубликовали другой вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин. Эти таблицы представляют собой определенным образом упорядоченные математические множества, называемые матрицами, над которыми по известным правилам можно производить различные математические операции. Матричная механика также позволяла достичь согласия с наблюдаемыми экспериментальными данными, но в отличие от волновой механики не содержала никаких конкретных ссылок на пространственные координаты или время. Гейзенберг особенно настаивал на отказе от каких-либо простых наглядных представлений или моделей в пользу только таких свойств, которые могли быть определены из эксперимента.

Шрёдингер показал, что волновая механика и матричная механика математически эквивалентны. Известные ныне под общим названием квантовой механики, эти две теории дали долгожданную общую основу описания квантовых явлений. Многие физики отдавали предпочтение волновой механике, поскольку ее математический аппарат был им более знаком, а ее понятия казались более "физическими"; операции же над матрицами - более громоздкими.

Функция Ψ. Нормировка вероятности.

Обнаружение волновых свойств микрочастиц свидетельствовало о том, что классическая механика не может дать правильного описания поведения подобных частиц. Возникла необходимость создать механику микрочастиц, которая учитывала бы также и их волновые свойства. Новая механика, созданная Шрёдингером, Гайзенбергом, Дираком и другими, получила название волновой или квантовой механики.

Плоская волна де Бройля

(1)

является весьма специальным волновым образованием, соответствующим свободному равномерному движению частицы в определенном направлении и с определенным импульсом. Но частица, даже в свободном пространстве и в особенности в силовых полях, может совершать и другие движения, описываемые более сложными волновыми функциями. В этих случаях полное описание состояния частицы в квантовой механике дается не плоской волной де Бройля, а какой-то более сложной комплексной функцией

, зависящей от координат и времени. Она называется волновой функцией. В частном случае свободного движения частицы волновая функция переходит в плоскую волну де Бройля (1). Сама по себе волновая функция вводится как некоторый вспомогательный символ и не относится к числу непосредственно наблюдаемых величин. Но ее знание позволяет статистически предсказывать значения величин, которые получаются экспериментально и потому имеют реальный физический смысл.

Через волновую функцию определяется относительная вероятность обнаружения частицы в различных местах пространства. На этой стадии, когда говорится только об отношениях вероятностей, волновая функция принципиально определена с точностью до произвольного постоянного множителя. Если во всех точках пространства волновую функцию умножить на одно и то же постоянное (вообще говоря, комплексное) число, отличное от нуля, то получится новая волновая функция, описывающая в точности то же состояние. Не имеет смысла говорить, что Ψ равна нулю во всех точках пространства, ибо такая «волновая функция» никогда не позволяет заключить об относительной вероятности обнаружения частицы в различных местах пространства. Но неопределенность в определении Ψ можно значительно сузить, если от относительной вероятности перейти к абсолютной. Распорядимся неопределенным множителем в функции Ψ так, чтобы величина |Ψ|2dV давала абсолютную вероятность обнаружения частицы в элементе объема пространства dV. Тогда |Ψ|2 = Ψ*Ψ (Ψ* - комплексно сопряжённая с Ψ функция) будет иметь смысл плотности вероятности, которую следует ожидать при попытке обнаружения частицы в пространстве. При этом Ψ будет определена все еще с точностью до произвольного постоянного комплексного множителя, модуль которого, однако, равен единице. При таком определении должно быть выполнено условие нормировки:

(2)

где интеграл берется по всему бесконечному пространству. Оно означает, что во всем пространстве частица будет обнаружена с достоверностью. Если интеграл от |Ψ|2 берётся по определённому объёму V1 – мы вычисляем вероятность нахождения частицы в пространстве объёма V1.

Нормировка (2) может оказаться невозможной, если интеграл (2) расходится. Так будет, например, в случае плоской волны де Бройля, когда вероятность обнаружения частицы одинакова во всех точках пространства. Но такие случаи следует рассматривать как идеализации реальной ситуации, в которой частица не уходит на бесконечность, а вынуждена находиться в ограниченной области пространства. Тогда нормировка не вызывает затруднений.

Итак, непосредственный физический смысл связывается не с самой функцией Ψ, а с ее модулем Ψ*Ψ. Почему же в квантовой теории оперируют с волновыми функциями Ψ, а не непосредственно с экспериментально наблюдаемыми величинами Ψ*Ψ? Это необходимо для истолкования волновых свойств вещества - интерференции и дифракции. Здесь дело обстоит совершенно так же, как во всякой волновой теории. Она (во всяком случае в линейном приближении) принимает справедливость принципа суперпозиции самих волновых полей, а не их интенсивностей и, таким образом, достигает включения в теорию явлений интерференции и дифракции волн. Так и в квантовой механике принимается в качестве одного из основных постулатов принцип суперпозиции волновых функций, заключающийся в следующем.

  • § 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
  • § 219. Движение свободной частицы
  • § 220. Частица в одномерной прямоугольной «потенциальной ям*» с бесконечно высокими «стенками*
  • § 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
  • § 222. Линейный гармонический осциллятор квантовой механике
  • Глава 29
  • § 223. Атом водорода в квантовой механике
  • 2. Квантовые числа. В квантовой механике доказывается, что уравнению Шредин-гера (223.2) удовлетворяют собственные функцииопределяемые тремя
  • § 225. Спин электрона. Спиновое квантовое число
  • § 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
  • § 227. Принцип Паули. Распределение электронов в атома по состояниям
  • § 228. Периодическая система элементов Менделеева
  • § 229. Рентгеновские спектры
  • § 230. Молекулы: химические связи, понятие об энергетических уровнях
  • § 231. Молекулярные спектры. Комбинационное рассеяние света
  • § 232. Поглощение. Спонтанное и вынужденное излучения
  • § 233. Оптические квантовые генераторы (лазеры) .
  • Глава 30 Элементы квантовой статистики
  • § 234. Квантовая статистика. Фазовое пространство. Функция распределения
  • § 235. Понятие о квантовой статистика Бозе - Эйнштейна и Ферми - Дирака
  • § 236. Вырожденный электронный газ в металлах
  • § 237. Понятие о квантовой теории теплоемкости. Фононы
  • § 238. Выводы квантовой теории электропроводности металлов
  • § 239. Сверхпроводимость. Понятие об эффекте Джозефсона
  • Глава 31 Элементы физики твердого тела
  • § 240. Понятие о зонной теории твердых тел
  • § 241. Металлы, диэлектрики и полупроводники по зонной теории
  • § 242. Собственная проводимость полупроводников
  • § 243. Примесная проводимость полупроводников
  • § 244. Фотопроводимость полупроводников
  • § 245. Люминесценция твердых тел
  • § 246. Контакт двух металлов по зонной теории
  • 1. Контактная разность потенциалов зависит лишь от химического состава и тем­пературы соприкасающихся металлов.
  • § 247.. Термоэлектрические явления и их применение
  • § 248. Выпрямление на контакте металл - полупроводник
  • § 249. Контакт электронного и дырочного полупроводников
  • § 250. Полупроводниковые диоды и триоды (транзисторы)
  • 7 Элементы физики атомного ядра и элементарных частиц
  • Глава 32 Элементы физики атомного ядра
  • § 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
  • § 252. Дефект массы и энергия связи ядра
  • § 253. Спин ядра и его магнитный момент
  • § 254. Ядерные силы. Модели ядра
  • 1) Ядерные силы являются силами притяжения;
  • § 255. Радиоактивное излучение и его виды
  • § 256. Закон радиоактивного распада. Правила смещения
  • § 257. Закономерности а-раепада
  • § 258.-Распад. Нейтрино
  • § 259. Гамма-излучение и его свойства
  • § 260. Резонансное поглощение-излучения (эффект Мeссбауэра**)
  • § 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
  • § 262. Ядерные реакции и их основные типы
  • 1) По роду участвующих в них частиц - реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов,частиц); реакции под действием-квантов;
  • §263. Позитрон.,-Распад. Электронный захват "-
  • § 264. Открытие нейтрона. Ядерные реакции под действием
  • § 265. Реакция деления ядра
  • § 266. Цепная реакция деления
  • § 267. Понятие о ядерной энергетике
  • § 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
  • 1) Протонно-протонный, или водородный, цикл, характерный для температур (приме­рно 107 к):
  • 2) Углеродно-азотный, или углеродный, цикл, характерный для более высоких тем­ператур (примерно 2 107 к):
  • Глава 33 Элементы физики элементарных частиц
  • § 269. Космическое излучение
  • § 270. Мюоны и их свойства
  • § 271. Мезоны и их свойства
  • § 272. Типы взаимодействий элементарных частиц
  • § 273. Частицы и античастицы
  • § 274. Гипероны. Странность и четность элементарных частиц
  • § 275. Классификация элементарных частиц. Кварки
  • § 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний

    Статистическое толкование волн да Бройля (см. § 216) и соотношение неопределен­ностей Гейзенберга (см. §215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции (х, у, z , t ), так как именно она, или, точнее, величина, определяет вероятность пребывания частицы в момент времени t в объеме dV , т. е. в области с координатами x и x + dx . y и y + dy . zuz + dz . Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

    Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвел­ла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью резуль­татов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредин­гера имеет вид

    (217.1)

    где, т - масса частицы,- оператор Лапласа,

    - мнимая единица, V {х, у, z , t ) - потенциальная функция частицы в силовом поле, в котором она движется, (х, у, z , t ) - искомая волновая функция частицы.

    Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью Оно дополняется условиями, накладываемыми на волновую функцию: 1) волно­вая функция должна быть конечной, однозначной и непрерывной (см. § 216); 2) произ­водныедолжны быть непрерывны; 3) функциядолжна быть

    интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

    Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, кото­рой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномер­ный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154) , или в комплексной записиСледовательно, плоская

    волна де Бройля имеет вид

    (217.2)

    (учтено, чтоВ квантовой механике показатель экспоненты берут со знаком минус,

    но поскольку физический смысл имеет только, то это (см. (217.2)) несущественно. Тогда

    откуда

    Используя взаимосвязь между энергией Е и импульсоми подставляя выражения

    (217.3), получим дифференциальное уравнение

    которое совпадает с уравнением (217.1) для случая U =0 (мы рассматривали свободную частицу).

    Если частица движется в силовом поле, характеризуемом потенциальной энергией U , то

    полная энергия Е складывается из типич еской и потенциальной энергий. Проводя аналогичные

    рассуждения и используя взаимосвязь между Е и р (для данного случаяпридем

    ° к дифференциальному уравнению, совпадающему с (217.1).

    Приведенные рассуждения не должны восприниматься как вывод уравнения Шреди-нгера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к кото­рым оно приводит.

    Уравнение (217.1) является обкщим уравнением Шредингера. Его также называют уравнением Шреднягера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем

    так что

    где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

    откуда после деления на общий множительи соответствующих преобразований

    придем к уравнению, определяющему функцию

    (217.5)

    Уравнение (217.5) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчис­ленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциямиНо регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собствев-нымн. Решения же, которые соответствуют собственным значениям энергии, называют­ся собственными функциями. Собственные значения Е могут образовывать как непре-

    рывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

    § 218. Принцип причинности ■ квантовой механике

    Из соотношения неопределенностей часто делают вывод о неприменимости принципа причинности к явлениям, происходящим в микромире. При этом основываются на следующих соображениях. В классической механике, согласно принципу причинно­сти - принципу классического детермизма, по известному состоянию системы в неко­торый момент времени (полностью определяется значениями координат и импульсов всех частиц системы) и силам, приложенным к ней, можно абсолютно точно задать ее состояние в любой последующий момент. Следовательно, классическая физика ос­новывается на следующем понимании причинности: состояние механической системы в начальный момент времени с известным законом взаимодействия частиц есть причи­на, а ее состояние в последующий момент - следствие.

    С другой стороны, микрообъекты не могут иметь одновременно и определенную координату, и определенную соответствующую проекцию импульса (задаются соот­ношением неопределенностей (215.1)), поэтому и делается вывод о том, что в началь­ный момент времени состояние системы точно не определяется. Если же состояние системы не определено в начальный момент времени, то не могут быть предсказаны и последующие состояния, т. е. нарушается принцип причинности.

    Однако никакого нарушения принципа причинности применительно к микрообъ­ектам не наблюдается, поскольку в квантовой механике понятие состояния микрообъ­екта приобретает совершенно иной смысл, чем в классической механике. В кванто­вой механике состояние микрообъекта полностью определяется волновой функцией (х,у, z , t ), квадрат модуля которой(х,у, z , t )\ 2 задает плотность вероятности нахождения частицы в точке с координатами х, у, z .

    В свою очередь, волновая функция(х,у, z , t ) удовлетворяет уравнению Шредин-гера (217.1), содержащему первую производную функции по времени. Это же означает, что задание функции(для момента времениt 0) определяет ее значение в последующие моменты. Следовательно, в квантовой механике начальное состояние

    Есть причина, а состояниев последующий момент - следствие. Это и есть форма принципа причинности в квантовой механике, т. е. задание функциипредопределяет ее значения для любых последующих моментов. Таким образом, состояние системы микрочастиц, определенное в квантовой механике, однозначно вытекает из предшест­вующего состояния, как того требует принцип причинности.

    Стационарные решения уравнения Шредингера.

    Приложение A.

    Нахождение решения уравнения Шредингера для свободного электрона в виде волнового пакета .

    Запишем уравнение Шредингера для свободного электрона

    После преобразований уравнение Шредингера принимает вид

    (A.2)

    Это уравнение решаем с начальным условием

    (A.3)

    Здесь - волновая функция электрона в начальный момент времени. Ищем решение уравнения (A.2) в виде интеграла Фурье

    (A.4)

    Подставляем (A.4) в (A.2) и получаем

    Решение (A.4) можно теперь записать в следующем виде

    (A.6)

    Используем начальное условие (A.3), и из (A.6) получаем разложение начальной волновой функции электрона в интеграл Фурье.

    (A.7)

    К выражению (A.7) применяем обратное преобразование Фурье

    (A.8)

    Подведем итог проделанным преобразованиям. Итак, если известна волновая функция электрона в начальный момент времени, то после интегрирования (A.8) находим коэффициенты . Затем после подстановки этих коэффициентов в (A.6) и интегрировании, получаем волновую функцию электрона в произвольный момент времени в любой точке пространства.

    Для некоторых распределений интегрирование можно провести в явном виде и получить аналитическое выражение для решения уравнения Шредингера. В качестве начальной волновой функции возьмем распределение Гаусса, модулированное плоской монохроматической волной.

    Здесь - средний импульс электрона. Выбор начальной волновой функции в таком виде позволят получить решение уравнения Шредингера в виде волнового пакета.

    Рассмотрим подробно свойства начальной волновой функции (A.9).

    Во-первых , волновая функция нормирована на единицу.

    (A.10)

    Нормировка (A.10) легко доказывается, если использовать следующий табличный интеграл.

    (A.11)

    Во-вторых , если волновая функция нормирована на единицу, то квадрат модуля волновой функции является плотностью вероятности, нахождения электрона в данной точке пространства.

    Здесь величину будем называть амплитудой волнового пакета в начальный момент времени. Физический смысл амплитуды пакета – это максимальное значение распределения вероятности. На Рис.1 показан график распределения плотности вероятности.

    Распределение плотности вероятности в начальный момент времени.

    Отметим некоторые особенности графика на Рис.1.

    1. Координата – это точка на оси x , в которой распределение вероятности имеет максимальное значение. Поэтому можно сказать, что с наибольшей вероятностью можно обнаружить электрон вблизи точки .

    2. Величина определят отклонение от точки , при котором величина распределения уменьшается в e раз по сравнению с максимальным значением.

    (A.13)

    В этом случае величину называют шириной волнового пакета в начальный момент времени, а величину – полушириной пакета.

    3. Вычислим вероятность нахождения электрона в интервале .

    (A.14)

    Таким образом, вероятность обнаружить электрон в области с центром и полушириной равна 0.843. Эта вероятность близка к единице, поэтому обычно, об области с полушириной говорят, как об области, где находится электрон в начальный момент времени.

    В-третьих , начальная волновая функция не является собственной функцией оператора импульса . Поэтому электрон в состоянии с волновой функцией не имеет определенного импульса, можно говорить только о среднем импульсе электрона. Вычислим средний импульс электрона.

    Поэтому, величина в формуле (A.9) является средним значением импульса электрона. Формула (A.15) легко доказывается, если использовать табличный интеграл (A.11).

    Таким образом, свойства начальной волновой функции разобраны. Теперь подставим функцию в интеграл Фурье (A.8) и найдем коэффициенты .

    В интеграле (A.16) делаем следующую замену переменной интегрирования.

    (A.17)

    В результате интеграл (A.16) принимает следующий вид.

    (A.18)

    В результате получаем следующее выражение для коэффициентов .

    (A.18)

    Подставляем коэффициенты в формулу (A.6), получаем следующее интегральное выражение для волновой функции.

    В интеграле (A.19) делаем следующую замену переменной интегрирования.

    (A.20)

    В результате интеграл (A.19) принимает следующий вид.

    Окончательно получаем формулу для волнового пакета.

    (A.22)

    Легко видеть, что для начального момента времени формула (A.22) переходит в формулу (A.9) для начальной волновой функции. Найдем плотность вероятности для функции (A.22).

    Подставляем волновой пакет (A.22) в формулу (A.23), и в результате получаем следующее выражение.

    (A.24)

    Здесь центр волнового пакета, или максимум распределения плотности вероятности, движется со скоростью , равной следующей величине.

    Полуширина волнового пакета увеличивается со временем, и определятся следующей формулой.

    (A.26)

    Амплитуда волнового пакета уменьшается со временем, и определятся следующей формулой.

    (A.27)

    Таким образом, распределение вероятности для волнового пакета можно записать в следующем виде.

    (A.28)

    На Рис.2. показано распределение вероятности в три последовательных момента времени.

    Распределение вероятности в три последовательных момента времени.

    Приложение B.

    Общие сведения о решении уравнения Шредингера .

    Введение.

    Движение квантовой частицы в общем случае описывается уравнением Шредингера:

    Здесь i – мнимая единица, h =1.0546´10 -34 (Дж×с) - постоянная Планка. Оператор Ĥ называется оператором Гамильтона. Вид оператора Гамильтона зависит от типа взаимодействия электрона с внешними полями.

    Если не учитывать спиновые свойства электрона, например, не рассматривать движение электрона в магнитном поле, то оператор Гамильтона можно представить в виде.

    (B.2)

    Здесь – оператор кинетической энергии:

    , (B.3)

    где m =9.1094´10 -31 (кг) – масса электрона. Потенциальная энергия описывает взаимодействие электрона с внешним электрическим полем.

    В данной лабораторной работе будет рассматриваться одномерное движение электрона вдоль оси x . Уравнение Шредингера в этом случае принимает следующий вид:

    . (B.4)

    Уравнение (B.4) с математической точки зрения является дифференциальным уравнение в частных производных для неизвестной волновой функции Y =Y (x,t). Известно, что такое уравнение имеет определенное решение, если заданы соответствующие начальные и граничные условия. Начальные и граничные условия выбираются исходя из конкретной физической задачи.



    Пусть, например, электрон движется слева направо с некоторым средним импульсом p 0 . Кроме того, в начальный момент времени t=0, электрон локализован в некоторой области пространства x m -d < x < x m +d. Здесь x m – центр области локализации электрона, а d – эффективная полуширина этой области.

    В этом случае начальное условие будет выглядеть следующим образом:

    . (B.5)

    Здесь Y 0 (x) – волновая функция в начальный момент времени. Волновая функция это комплексная функция, поэтому графически удобно представлять не саму волновую функцию, а плотность вероятности.

    Плотность вероятности, нахождения электрона в данном месте в данный момент времени выражается через волновую функцию следующим образом:

    Заметим, что вероятности должна быть нормирована на единицу. Отсюда получаем условие нормировки волновой функции:

    . (B.7)

    Распределение плотности вероятности в начальный момент времени

    , (B.8)

    можно изобразить графически. На Рис.3. показано возможное расположение электрона в начальный момент времени.

    Расположение электрона в момент t=0.

    Из этого рисунка видно, что с наибольшей вероятностью электрон находится в точке x m . Буквой A будем обозначать амплитуду (максимальное значение) распределения вероятности. Из этого рисунка так же видно, как определяется ширина 2d или полуширина d распределения. Если распределение имеет экспоненциальный или гауссов характер, то ширину распределения определяют на уровне в e раз меньшем, чем максимальное значение.

    На Рис.3. показан вектор среднего импульса электрона. Это означает, что электрон движется справа налево, и распределение вероятности так же будет перемещаться справа налево. На Рис.2. показано распределение вероятности в три последовательных момента времени. На Рис.2. видно, что максимум распределения x m (t) перемещается слева направо.

    На Рис.2. можно заметить, что движение электрона справа налево сопровождается деформацией распределения плотности вероятности. Амплитуда A (t) уменьшается, а полуширина d(t) растет. Все указанные детали движения электрона можно получить, если решить уравнение Шредингера (B4) с начальным условием (B.5).

    Резюме . В зависимости от постановки физической задачи может меняться вид уравнения Шредингера. При исследовании тех или иных физических явлений, описываемых уравнением Шредингера, выбираются нужные начальные и граничные условия для нахождения решения уравнения Шредингера.

    Стационарные решения уравнения Шредингера.

    Если электрон движется в постоянном по времени внешнем поле, то его потенциальная энергия не будет зависеть от времени. В этом случае одним из возможных решений уравнения Шредингера (B.4) является решение с разделяющимися переменными по времени t и по координате x.

    Применяем известный в математике прием решения дифференциальных уравнений. Ищем решение уравнения (B.4) в виде:

    . (B.9)

    Подставляем (B.9) в уравнение (B.4) и получаем следующие соотношения:

    . (B.10)

    Здесь E – константа, которой в квантовой механике придается смысл полной энергии электрона. Соотношения (B.10) эквивалентны следующим двум дифференциальным уравнениям:

    . (B.11)

    Первое уравнение в системе (B.11) имеет следующее общее решение:

    Здесь C – произвольная константа. Подставляем (B.12) в выражение (B.9) и получаем решение уравнения Шредингера (B.4) в виде:

    , (B.13)

    где функция y (x) удовлетворяет уравнению.

    (B.14)

    Константа C содержится в функции y (x).

    Решение уравнения Шредингера (B.4) в виде выражения (B.13), называется стационарным решением уравнения Шредингера . Уравнение (B.14) называют стационарным уравнение Шредингера . Функцию y (x) называют волновой функцией , независящей от времени.

    Состояние электрона, которое описывается волной функцией (B.13), называется стационарным состоянием . В квантовой механике утверждается, что в стационарном состоянии электрон обладает определенной энергией E .

    Полученные результаты можно обобщить на уравнение Шредингера (B.1) для трехмерного движения электрона. Если оператор Гамильтона Ĥ не зависит явно от времени, то одним из возможных решений уравнения Шредингера (B.1) является стационарное решение следующего вида:

    , (B.15)

    где волновая функция удовлетворяет стационарному уравнению Шредингера.

    (B.16)

    Заметим, что уравнения (B.14) и (B.16) в квантовой механике имеют еще оно название. Эти уравнения являются уравнениями на собственные функции и собственные значения оператора Гамильтона. Другими словами, решая уравнение (B.16) находят энергии E (собственные значения оператора Гамильтона) и соответствующие им волновые функции (собственные функции оператора Гамильтона).

    Резюме . Стационарные решения уравнения Шредингера являются некоторым классом решений из огромного множества других решений уравнения Шредингера. Стационарные решения существуют, если оператор Гамильтона не зависит явно от времени. В стационарном состоянии электрон имеет определенную энергию. Для нахождения возможных значений энергии надо решить стационарное уравнение Шредингера.

    Волновой пакет.

    Легко видеть, что стационарные решения уравнения Шредингера не описывают движение локализованного электрона, как показано на Рис.1 и Рис.2. Действительно, если взять стационарное решение (B.13) и найти распределение вероятности, то получится функция независящая от времени.

    (B.17)

    В этом нет ничего удивительного, стационарное решение (B.13) является одним из возможных решений дифференциального уравнения в частных производных (B.4).

    Но вот что интересно, в силу линейности уравнения Шредингера (B.4) относительно волновой функции Y (x,t), для решений этого уравнения выполняется принцип суперпозиции. Для стационарных состояний этот принцип утверждает следующее. Любая линейная комбинация стационарных решений (с разными энергиями E ) уравнения Шредингера (B.4) то же является решением уравнения Шредингера (B.4).

    Чтобы дать математическое выражение для принципа суперпозиции, нужно сказать несколько слов об энергетическом спектре электрона. Если решение стационарного уравнения Шредингера (B.14) имеет дискретный спектр, то это означает, что уравнение (B.14) можно записать в следующем виде:

    (B.18)

    где индекс n пробегает, вообще говоря, бесконечный ряд значений n=0,1,2,¼ . В этом случае решение уравнения Шредингера (B.4) можно представить в виде суммы стационарных решений.

    (B.19)

    В квантовой механике доказывается, что собственные функции y n (x) дискретного спектра можно сделать ортонормированной системой функций. Это означает, что выполняется следующее условие нормировки.

    (B.20)

    Здесь d n m – символ Кронекера.

    y n (x) ортонормированная, то коэффициенты C n в сумме (B.19) имеют простой физический смысл. Квадрат модуля от коэффициента C n равен вероятности того, что электрон в состоянии с волновой функцией (B.19) имеет энергию E n .

    Самое главное в этом утверждении, что электрон в состоянии с волновой функцией (B.19) не имеет определенной энергии. При измерении энергии, у этого электрона может быть получена любая энергия из набора с вероятностью (B.21).

    Поэтому говорят, что электрон может обладать той или иной энергией с вероятностью, определяемой формулой (B.21).

    Электрон, который находится в стационарном состоянии и имеет определенную энергию, будем называть монохроматическим электроном . Электрон, который не находится в стационарном состоянии, и поэтому не имеет определенной энергии, будем называть немонохроматическим электроном .

    Если решение стационарного уравнения Шредингера (B.14) имеет непрерывный спектр, то это означает, что уравнение (B.14) можно записать в следующем виде:

    , (B.22)

    где энергия E принимает значения на некотором непрерывном интервале [E min , E max ]. В этом случае решение уравнения Шредингера (B.4) можно представить в виде интеграла стационарных решений.

    (B.23)

    Собственные функции непрерывного спектра y E (x) в квантовой механике принято нормировать на d-функцию:

    , (B.24)

    Определение d-функции содержится в следующих интегральных соотношениях:

    Чтобы наглядно представить поведение d-функции, приводят следующее описание этой функции:

    Так вот, если система функций y E (x) нормирована на d-функцию, то квадрат модуля от коэффициента C (E ) в интеграле (B.23) равен плотности вероятности того, что электрон в состоянии с волновой функцией (B.19) имеет энергию E .

    Волновая функция Y(x,t) представленная в виде суммы (B.19) или в виде интеграла (B.23) от стационарных решений уравнения Шредингера, называется волновым пакетом .

    Таким образом, состояние не монохроматического электрона описывается волновым пакетом. Можно сказать еще так, в состояние немонохроматического электрона дают вклад состояния монохроматического электрона со своими весовыми множителями.

    На Рис.1. и Рис.2. изображены волновые пакеты электрона в разные моменты времени.

    Резюме . Состояние немонохроматического электрона описывается волновым пакетом. Немонохроматический электрон не обладает определенной энергией. Волновой пакет можно представить суммой или интегралом волновых функций стационарных состояний со своими энергиями. Вероятность того, что немонохроматический электрон имеет ту или иную энергию из этого набора энергий, определятся вкладом соответствующих стационарных состояний в волновой пакет.

    Свободное движение. Общее решение уравнения Шредингера.

    В зависимости от поля, с которым взаимодействует электрон, решение стационарного уравнения Шредингера (B.14) может иметь разный вид. В данной лабораторной работе рассматривается свободное движение. Поэтому в уравнении (B.14) положим потенциальную энергию равной нулю. В результате получим следующее уравнение:

    , (B.26)

    общее решение этого уравнения имеет следующий вид:

    . (B.27)

    Здесь C 1 и С 2 - две произвольные константы, k имеет смысл волнового числа.

    Теперь с помощью выражения (B.23) запишем общее решение уравнения Шредингера для свободного движения. Подставляем функцию (B.27) в интеграл (B.23). При этом учитываем, что пределы интегрирования по энергии E для свободного движения выбираются от нуля до бесконечности. В результате получаем следующее выражение:

    В этом интеграле удобно перейти от интегрирования по энергии E к интегрированию по волновому числу k . Будем считать, что волновое число может принимать как положительные, так и отрицательные значения. Для удобства введем частоту w, связанную с энергией E , следующим соотношением:

    Преобразуя интеграл (B.28), получаем следующее выражение для волнового пакета:

    . (B.30)

    Интеграл (B.30) дает общее решение уравнения Шредингера (B.4) для свободного движения. Коэффициенты C (k) находятся из начальных условий.

    Возьмем начальное условие (B.5) и подставим туда решение (B.30). В результате получим следующее выражение:

    (B.31)

    Интеграл (B.31) есть не что иное, как разложение начальной волновой функции в интеграл Фурье. Используя обратное преобразование Фурье, находим коэффициенты C (k).

    . (B.32)

    Резюме . Под свободным движением электрона понимается движение в отсутствии внешнего поля в бесконечной области пространства. Если известна волновая функция электрона в начальный момент времени Y 0 (x), то с помощью формул (B.32) и (B.30) можно найти общее решение уравнения Шредингера Y(x,t) для свободного движения электрона.