Определение плотности тела неправильной формы. Определение плотности твердых тел разными методами

Фокин Дмитрий, Зарипов Юлиан 7 «А» класс МКОУ СОШ №1 г. Миньяра

Ознакомится с методами измерения физических величин проводимых измерений на примере определения плотности твердых тел.

Скачать:

Предварительный просмотр:

III Ашинский районный конкурс реферативно-исследовательских работ

для учащихся 5-8 классов

Определение плотности твердых тел

разными методами

(Естествознание)

7 «А» класс МКОУ СОШ №1 г. Миньяра Руководитель: Лактионова Надежда

Сергеевна, учитель физики

Аша - 2013

1. Введение ………………………………………………………………..............3

2. Основная часть

2.1. Аппаратура и метод измерений.........................................................4-6

2.2. Определение плотности твердых тел.……………………………...6-7

2.2.1. Метод Менделеева………………………………………………...7-8

2.2.2. Метод Архимеда…………………………………………………8-10

2.2.3. Метод безразличного плавания………………………………..10-12 3. Заключение …………………………………….…………………………….12

4. Список литературы …………………………………………………………13

5. Приложение ……………………………………………………………….14-18

1. Введение

Что значит измерить физическую величину правильно? На этот вопрос ответить непросто. Обычно смешивают два понятия: правильно и точно. «Часто стараются произвести измерения с наибольшей достижимой точностью, т.е. сделать ошибку измерений по возможности малой. Однако следует иметь в виду, что чем точнее мы хотим измерить, тем труднее это сделать. Поэтому не следует требовать от измерений большей точности, чем это необходимо для решения поставленной задачи .

Я ставлю перед собой задачу определить плотности твердых тел различными методами, сравнить полученные результаты с табличными и убедиться в том, что проводимый нами эксперимент дает небольшую ошибку. Для чего нужно знать плотность вещества? Плотность вещества нужно знать для различных практических целей. Инженер, создавая машину, заранее по плотности и объему материала может рассчитать массу деталей будущей машины. Строитель может определить, какова будет масса строящегося здания. Так, если океанологам известно вертикальное распределение плотности морской воды, то они могут рассчитать направление и скорость течений. Вертикальное распределение плотности необходимо знать и для определения устойчивости водной массы: если масса неустойчива, то есть если более плотная вода лежит выше менее плотной, будет происходить перемешивание. Даже в домашних условиях при покупке ковролина следует обратить внимание на плотность ворса. Ковролин высокой плотности прослужит дольше, и на нем не будут оставаться вмятины от мебельных ножек.

Цель работы: ознакомится с методами измерения физических величин проводимых измерений на примере определения плотности твердых тел.

2. Основная часть

2.1. Аппаратура и метод измерений

Для оценки плотности твердого тела необходимо знать его объем и массу. Массу тела можно определить взвешиванием его на рычажных весах. Объем тела правильной геометрической формы определяют, измеряя его линейные параметры. Таким образом, чтобы узнать плотность тела, необходимо провести ряд физических измерений. Под измерением понимается сравнение измеряемой величины с другой величиной, принятой за единицу измерения.

Измерения делятся на прямые и косвенные. При прямых измерениях определяемая величина сравнивается с единицей измерения непосредственно с помощью измерительного прибора, проградуированного в соответствующих единицах. Примерами прямых измерений могут служить измерения длин линейкой, промежутков времени секундомером. При косвенных измерениях искомое значение величины не измеряется непосредственно, а находится по известной зависимости между этой величиной и величинами, полученными при прямых измерениях. К косвенным относятся, например, измерения объема, плотности твердых тел, измерение скорости движения тела по измерениям отрезков пути и промежутков времени, измерение удельного сопротивления проволоки. Никакая физическая величина не может быть, однако, определена с абсолютной точностью. Другими словами, любое измерение всегда производится с некоторой ошибкой - погрешностью. Поэтому полученное в

результате измерений значение какой-либо величины должно быть записано в виде x ± Δ x, (1)

где Δ x - абсолютная погрешность измерения, характеризующая возможное отклонение измеренного значения данной величины от его истинного значения. При этом, поскольку истинное значение остается неизвестным, можно дать лишь приближенную оценку абсолютной погрешности. Поскольку причины возникновения ошибок бывают самыми разными, необходимо классифицировать погрешности. Только тогда возможна их правильная оценка, так как от типа погрешностей зависит и способ их вычисления.

Погрешности подразделяются на случайные и систематические. Систематической погрешностью называют составляющую погрешности измерения, остающуюся постоянной или закономерно изменяющуюся при повторных измерениях одной и той же величины. Она может быть связана с неисправностями измерительных приборов, неточностью их регулировки, неправильной их установкой. Систематические погрешности в принципе могут быть исключены, поскольку причины, их вызывающие, в большинстве случаев известны.

Случайной погрешностью называют составляющую погрешности измерения, изменяющуюся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности зависят от условий, в которых производятся измерения, от специфики измеряемых объектов. Эти погрешности принципиально неустранимы, однако их величина уменьшается при использовании многократных измерений. Выделяют также погрешности приборов, которые могут иметь как систематический, так и случайный характер. Эти погрешности связаны с несовершенством любого (исправного) измерительного инструмента. Если значение измеряемой величины определяется по шкале инструмента, абсолютная погрешность прибора считается, как правило, равной половине цены деления шкалы (например, линейки) или цене деления шкалы, если стрелка прибора перемещается скачком (секундомер).

Как уже указывалось, случайные погрешности можно уменьшить, многократно измеряя одну и ту же величину. Однако максимально возможная точность измерения определяется теми приборами, которые используются в эксперименте. Поэтому увеличение числа измерений имеет смысл лишь до тех пор, пока случайная погрешность не станет явно меньше погрешности прибора. Для правильной записи конечного результата необходимо округлить рассчитанное значение абсолютной погрешности и сам результат измерения. Как правило, точность оценки погрешности бывает очень небольшой.

Поэтому абсолютная погрешность округляется до одной значащей цифры.

Если, однако, эта цифра оказалась единицей, следует оставить две значащие цифры. Округление конечного результата производится с учетом его погрешности. При этом последняя значащая цифра результата должна быть того же порядка величины (находится в той же десятичной позиции), что и погрешность. Если, к примеру, получено, что ρ = 8723 , 23 кг / м3, а

Δ ρ = 93 , 27 кг / м3,

то правильная запись результата будет выглядеть так

ρ = (8720 ± 90) кг / м3 .

2.2.Определение плотности твердых тел

Тела, изготовленные из различных веществ, при одинаковой массе имеют разные объемы. Железный брус массой 1 т имеет объем 0,13 м 3 , а лед массой 1 т – объем 1,1 м 3 , т.е. почти в 9 раз больше.

Из этих примеров можно сделать и такой вывод, что тела объемом 1 м3 каждое, изготовленные из различных веществ, имеют разные массы. Железо объемом 1 м 3 имеет массу 7800 кг, а лед того же объема – 900 кг, т.е. почти в 9 раз меньше. Это различие объясняется тем, что различные вещества имеют разную плотность. Плотность показывает, чему равна масса вещества, взятого в объеме 1 м 3 .

Плотность – физическая величина, характеризующая свойство тел равного объема иметь разную массу.

Чтобы определить плотность вещества, надо массу тела разделить на его объем. Следовательно, плотность есть физическая величина, равная отношению массы тела к его объему.

Единицей плотности вещества является . Это плотность однородного вещества, масса которого равна 1 кг при объеме 1 м 3 .

2.2.1. Метод Менделеева

Метод Менделеева (метод взвешивания). На одну чашку весов кладется гиря с массой заведомо большей, чем масса тела, а на другую - разновесы, добиваясь равновесия весов. Затем на чашку с разновесами помещают взвешиваемое тело, а разновесы снимают до тех пор, пока вновь не установится равновесие. Масса снятых гирь будет равна массе тела. Этот метод позволяет исключить систематические погрешности, связанные с неравноплечностью весов и зависимостью их чувствительности от величины нагрузки.

Порядок выполнения работы:

1. С помощью линейки определить размеры исследуемого тела, необходимые для вычисления его объема. Каждый параметр измерить не менее пяти раз.

2. С помощью весов и разновесов определить массу тела. Взвешивание производить не менее пяти раз.

3. Все экспериментальные результаты занести в таблицу.

Обработка результатов измерений

1. По полученным экспериментальным данным находят средние значения линейных размеров и массы тела.

2. Используя средние значения замеренных параметров, вычисляют

плотность изучаемого тела.

3. Определяют абсолютную погрешность Δ ρ . Записывают окончательный результат измерения плотности тела, используя правила округления погрешностей и самой измеряемой величины.

Таблица №1. Первый образец

Первый образец

Среднее

значение

Длина (м)

0,049

0,0492

0,049

0,0492

0,049

0,04908

Ширина (м)

0,036

0,036

0,0362

0,0362

0,036

0,03608

Высота (м)

0,012

0,0122

0,012

0,0122

0,012

0,01208

Масса (кг)

0,0112220

0,0112226

0,0112220

0,0112224

0,0112220

0,0112222

Плотность (кг / м3)

530,14

519,56

527,38

525,15

530,09

526,464

Таблица №2. Второй образец

Второй

образец

Среднее

значение

Длина (м)

0,067

0,067

0,0675

0,067

0,0675

0,0672

Ширина

(м)

0,047

0,0475

0,047

0,0475

0,047

0,0472

Высота

(м)

0,010

0,0105

0,010

0,010

0,0105

0,0102

Масса (кг)

0,0203

0,0203

0,02035

0,02035

0,0203

0,02032

Плотность

(кг / м3)

644,65

607,78

641,35

639,33

615,15

629,64

Таблица №3. Третий образец

Третий образец

Среднее

значение

Длина (м)

0,056

0,0562

0,056

0,056

0,056

0,05604

Ширина

(м)

0,043

0,043

0,0432

0,043

0,043

0,04304

Высота

(м)

0,010

0,010

0,010

0,0102

0,010

0,0102

Масса (кг)

0,017

0,017

0,0175

0,017

0,017

0,0171

Плотность (кг / м3)

705,98

703,35

724,04

703,35

705,98

708,54

2.2.2.Метод Архимеда

Метод Архимеда, опустив тело в воду, по объему вытесненной воды определяем объем тела, взвешиванием на весах, находим массу и по формуле вычисляем плотность.

Цель: научиться экспериментально определять плотность твердого тела.

Оборудование: весы ученические, цилиндр железный, цилиндр алюминиевый, шарик, сырое яйцо, вода, измерительный цилиндр, отливной сосуд.

Выполнение работы

Железный цилиндр

m =151г =0,151кг; V 1 =75мл; V 2 =95мл.V= 20мл. =0,00002м 3

Ц.Д.= (80-70):10=1мл измерительного цилиндра.

P=m\v=0,351кг\0,00002м 3 =7550кг\м 3 . Табличное значение 7800кг\м 3

Алюминиевый цилиндр

m=51г 590мг=0,051590кг; V 1 =75мл; V 2 =94мл; V=19мл. =0,000019м 3 Ц.Д.= (80-70):10=1мл; P=m\v=0, 05159кг\0, 000019м 3 =2715,3кг\м 3

Табличное значение 2700кг\м 3

Шарик (оргстекло)

m=9г 240мг=0,009240кг; V 1 =74мл; V 2 =82мл; V=8мл=0,000008м 3 Ц.Д.=(80-70):10=1мл; P=m\v=0, 00924кг\0,000008м 3 =1155кг\м 3 .

Табличное значение 1200кг\м 3

Тело неправильной формы

m=9г 200мг =0,0092кг; V 1 =74мл; V 2 =77мл; V=3мл=0,000003м 3 Ц.Д.=(80-70):10=1мл; P=m\v=0,0092кг\0,000003=3066,7кг\м 3 .

Яйцо

m=41гр 800мг =0,041800кг; V=38мг =0,000038м 3 ;

P=m\v=0,041800кг \0,000038м 3 =1100кг\м 3 .

Определяю цену деления измерительного цилиндра:

Используя измерительный цилиндр, измеряю объем яйца:

Измеряю массу яйца:

Вычисляю плотность яйца: ;

Кусок мыла

Длина – 83мм=0,083м; ширина – 52мм=0,052м; высота – 32мм=0,032м. m=172гр=0,172кг; V=0,0001381 м 3 ; P=0,172кг\0,0001381м 3 =1245,47кг\ м 3

Измеряю массу куска мыла:

Измеряю объем куска мыла:

Вычисляю плотность куска мыла:

Выражаю плотность куска мыла в: ;

2.2.3.Метод безразличного плавания

«…Если вес тела в точности равен весу вытесненной жидкости, оно будет находиться в равновесии внутри жидкости. Например, куриное яйцо тонет в пресной воде, но плавает в соленой. Можно сделать раствор соли, концентрация которого постепенно уменьшается кверху, так что выталкивающая сила внизу сосуда больше, а вверху – меньше веса яйца. В таком растворе яйцо держится на такой глубине, где его вес равен выталкивающей силе. Если твердое тело однородно, т.е. во всех точках имеет одну и ту же плотность, то тело будет тонуть, всплывать или оставаться в равновесии внутри жидкости в зависимости от того, больше ли плотность тела плотности жидкости, меньше или равна ей. В случае неоднородных тел нужно сравнивать с плотностью жидкости среднюю плотность тела». Значит, можно подобрать такой однородный раствор соли в воде, в котором яйцо плавает на некоторой глубине. Плотность раствора можно измерить с помощью ареометра, поскольку само измерение плотности занимает немного времени, четырех-пяти ареометров на класс достаточно.

Этот метод применяется в лабораторной практике при определении, например, плотности мелких кристаллов в достаточно широких пределах. Для этого смешением нескольких жидкостей разной плотности подбирается такой раствор, в котором кристаллик плавает в толще жидкости. Оборудование: мензурка (250 мл), мерный стакан (400 мл), химический стакан (250 мл), ареометр, насыщенный раствор поваренной соли, стеклянная палочка.

Ход работы:

1. Убедимся, что ареометр предназначен для измерения плотностей, которые больше 1 г/см3. Определим цену деления ареометра.

2. Положим яйцо на дно мерного стакана (400 мл), налить чистой воды до половины.

3. Начать доливать крепкий раствор поваренной соли, слегка помешивая стеклянной палочкой, до тех пор, пока яйцо не начнет отрываться от дна. Убедимся, что яйцо не всплывает на поверхность. Если яйцо всплыло, долить чистой воды, чтобы уменьшить плотность раствора.

4. Перелить раствор в мензурку. Аккуратно опуская ареометр в мензурку, измерить плотность раствора. Записать полученное значение с учетом ошибки измерений. ρ = (1100 ± 0,002) кг / м3 .

5. Эскизно изобразить проведение опыта, указать силы, действующие на яйцо, плавающее в мерном стакане.

Ошибка измерений в данном случае определяется ценой деления ареометра (например 0,002 кг/м3) и, следовательно, составляет половину цены деления (т.е. около 0,1%), т.е. сравнима с ошибкой определения массы в первом методе.

Выполнив научно-практическую работу, научились определять плотность тел правильной и неправильной формы разными методами и убедились в том, что исследуемые тела тонут, или плавают внутри жидкости (воде), т.к. плотность веществ, из которого они состоят, больше плотности воды (воды ).

3. Заключение

Я ставил перед собой задачу определить плотности твердых тел различными методами, сравнить полученные результаты с табличными и убедиться в том, что проводимый мною эксперимент дает ошибку. Со своей поставленной задачей я справился, но понял, что определить плотность тела точно очень сложно. Я буду изучать глубже данные вопросы в старших классах. Поэтому моя задача в старших классах познакомится с расчетом погрешностей и научиться добиваться более точных измерений.

4. Список литературы

  1. Зайдель А.Н. Ошибки измерений физических величин. – Л.: Наука, 2010.
  2. Химическая энциклопедия. – М.: Химическая энциклопедия, 2009.
  3. Физика./Под ред. А.А.Пинского. – М.: Просвещение, 2010.
  4. Ландсберг Г.С. Элементарный учебник физики. Т. 1. – М.: АОЗТ «Шрайк», 2007.
  5. Детлаф А.А. Курс физики. – М., 2007.
  6. Физические величины. Справочник. – М., 2010.
  7. Физический практикум под редакцией Ивероновой В.И. – М., 2003.
  8. Яворский Б.М., Детлаф А.А. Справочник по физике. – М., 2004.

5. Приложение

Приложение 1

Плотность первого образца ρ = (526,5 ± 3,5) кг / м3 (липа),

табличное значение 530 кг / м3

Первый образец. Липа

Плотность второго образца ρ = (629,5 ± 20,5) кг / м3 (береза),

табличное значение650 кг / м3

Второй образец. Береза

Плотность третьего образца ρ = (708,5 ± 7,5) кг / м3 (дуб),

табличное значение 700 кг / м3

Третий образец. Дуб

Приложение 2

Рис. 1. Определение плотности тела по методу безразличного плавания

Приложение 3

Плотности некоторых твердых тел

Твердое тело

ρ, кг / м 3

ρ, г / cм 3

Твердое тело

ρ, кг / м 3

ρ, г / cм 3

22 600

22,6

Мрамор

2700

22 400

22,4

Стекло оконное

2 500

21 500

21,5

Фарфор

2 300

19 300

19,3

Бетон

2 300

11 300

11,3

Кирпич

1 800

10 500

10,5

Сахар-рафинад

1 600

8 900

Оргстекло

1 200

Латунь

8 500

Капрон

1 100

Сталь, железо

7 800

Полиэтилен

0,92

Олово

7 300

Парафин

0,90

7 100

Лёд

0,90

Чугун

7 000

Дуб (сухой)

0,70

Корунд

4 000

Сосна (сухая)

0,40

2 700

Пробка

0,24

Плотности некоторых жидкостей
(при норм. атм. давл., t = 20ºC)

Жидкость

ρ, кг / м 3

ρ, г / cм 3

Жидкость

ρ, кг / м 3

ρ, г / cм 3

13 600

13,60

Керосин

0,80

Серная кислота

1 800

1,80

Спирт

0,80

Мёд

1 350

1,35

Нефть

0,80

Вода морская

1 030

1,03

Ацетон

0,79

Молоко цельное

1 030

1,03

Эфир

0,71

Вода чистая

1000

1,00

Бензин

0,71

Масло подсолнечное

0,93

Жидкое олово
(при t = 400ºC)

6 800

6,80

Масло машинное

0,90

Жидкий воздух
(при t = -194ºC)

0,86

Плотности некоторых газов
(при норм. атм. давл., t = 20ºC)

Газ

ρ, кг / м 3

ρ, г / cм 3

Газ

ρ, кг / м 3

ρ, г / cм 3

3,210

0,00321

Оксид углерода (II)
(угарный газ)

1,250

0,00125

Оксид углерода (IV)
(углекислый газ)

1,980

0,00198

Природный газ

0,800

0,0008

1,430

0,00143

Водяной пар (при
t = 100ºC)

0,590

0,00059

Воздух (при 0ºC)

1,290 материала

Плотность материала
ρ, кг/м 3

Древесина, пробка

Древесина, лиственница

Древесина, липа

Древесина, ель

Древесина, сосна

Древесина, береза

Древесина, буд

Бумага

700-1200

Резина

900-2000

Кирпич

1400-2100

Фарфор

2300

Бетон

2000-2200

Цемент

2800-3000

Дерево сухое, афромозия

Твердое

Дерево сухое, бамбук

Твердое

300-400

Дерево сухое, береза

Твердое

650-670

Дерево сухое, вяз

Твердое

600-690

Дерево сухое, дуб

Твердое

Дерево сухое, ель

Твердое

Дерево сухое, железное дерево (бакаут)

Твердое

1300

Дерево сухое, ива

Твердое

Дерево сухое, кипарис

Твердое

Дерево сухое, клен

Твердое

Дерево сухое, лиственница

Твердое

Дерево сухое, орех-пекан, pecan wood

Дерево сухое, осина

Твердое

Дерево сухое, пихта

Твердое

Дерево сухое, платан

Твердое

Дерево сухое, сосна

Твердое

Дерево сухое, сосна (белая)

Твердое

Дерево сухое, хлорофора высокая

Твердое

Дерево сухое, ясень

Твердое

540-670

Дерево сухое, бук

Твердое

Дерево сухое, дуб

Твердое

700-930

Дерево сухое, кедр

Твердое

Дерево сухое, красное дерево (махагониевое дерево)

Твердое

500-800

Дерево сухое, пробковое дерево (бальза=бальса)

Твердое

150-250

Дерево сухое, самшит

Твердое

1000

Дерево сухое, тиковое дерево

Твердое

Инструкционная карта № 2

Лабораторная работа № 1

Тема . ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ ТВЕРДОГО ТЕЛА И ЖИДКОСТИ.

Цель : определить плотность твердых тел и жидкости.

Оборудование : весы с разновесами; мерный цилиндр; линейка; исследуемые твердые тела (деревянный брусок, кусочек сахара, металлический цилиндр с нитью); стакан с исследуемой жидкостью (лимонад или минеральная вода), сыпучий материал (песок).

Теоретическая подготовка: Плотностью вещества называется величина, равная отношению массы тела m к его объему V ; иначе говоря, плотность вещества - это величина, показывающая, чему равна масса вещества в единице объема.

Плотность измеряется в г/см 3 , кг/м 3 .

Чтобы найти плотность вещества, надо знать массу и объем тела, которое сделано из этого вещества.

Эксперимент № 1. Определение плотности тел правильной геометрической формы.

Ход работы:

1. Возьмите тело правильной геометрической формы. Например, деревянный брусок.

2. С помощью весов определить массу бруска.

3. Определить размеры бруска с помощью линейки. Вычислить объем бруска по формуле:

a – длина, см

b – ширина, см

h – высота, см

4. Вычислить плотность тела.

5. Повторив пункты 2-4, вычислить плотность кусочка сахара.

Эксперимент № 2. Определение плотности жидкостей и сыпучих тел.

Ход работы:

1. Чтобы определить массу жидкости, поставьте пустую мензурку на весы. Уравновесьте весы.

2. Налейте жидкость в мензурку, с помощью весов определите ее массу.

3. По делениям мензурки определите объем налитой жидкости.

4. Вычислить плотность жидкости.

5. Повторив п.1-4, определите плотность сыпучего материла.

Эксперимент № 3. Определение плотности тел неправильной геометрической формы.

Ход работы:

1. Возьмите тело неправильной геометрической формы. Например, кусок пластилина или парафиновую свечу.

2. С помощью весов определить массу тела.

3. Чтобы определить объем тела неправильной формы, воспользуйтесь опытом Архимеда:

Налейте в мерную мензурку воду. Запомните ее объем.

Опустите в воду тело, объем которого вы хотите определить. Запомните значение объема жидкости.

Вычислите разницу двух объемов (начального и конечного). Именно эта разница и будет объемом тела неправильной формы.

4. Вычислить плотность тела.

5. Повторив пункты 1-4, вычислить плотность металлического цилиндра.

6. По таблице плотностей определите материал, из которого сделан цилиндр.


Оформление работы:

1. Заполните таблицу:

Исследуемое тело, жидкость Масса m, г Объем V, см 3 Плотность r
г/см 3 кг/м 3
ЭКСПЕРИМЕНТ № 1
ЭКСПЕРИМЕНТ № 2
ЭКСПЕРИМЕНТ № 3

2. Сделайте вывод, в котором не забудьте указать факторы, которые могли повлиять на точность результатов.

1. В мензурку наливаем воду до определенного уровня. Опускаем цилиндр в мензурку, при этом уровень воды поднимается на N делений. Цена деления мензурки . Вынимаем цилиндр из мензурки.

2. Опускаем в мензурку твердое тело неправильной формы. Обьем
, гдеn – число делений, на которое поднялась вытесненная телом вода. За абсолютную погрешность можно принять
. Тогда относительная погрешность:

3. Взвешиваем тело и определяем массу:
;

4. Абсолютная погрешность массы:

5. Плотность определяется по формуле: ρ=m/V т

Абсолютная и относительная погрешности, как и в случае цилиндра будут:

Вывод: окончательные значения объема и плотности цилиндра:

V ц =(70.690.62)см 3

ρ ц =(1.560.01)см 3

Значения объема и плотности тела неправильной формы:

V =(25.250.25)см 3

ρ =(3.960.04)г/см 3

Значения V и ρ записаны с точностью до 2-го знака, т.к. в расчет входят величины (высота и диаметр), которые могут быть определены лишь с такой точностью.

Погрешность объема тела неправильной формы косвенным образом связана с погрешностью объема цилиндра, следовательно, первая не может быть меньше второй. Таким образом, запись обьема тела неправильной формы нельзя считать верной.

В этом случае необходим следующий расчет:

.

Считая N и n постоянными, имеем V т = V ц =0.62см 3 , = V ц /V т =2.56%, т.е. V т =(25.250.62)см 3 .

Контрольные вопросы

    Масса и плотность тела.

    Определение объемов тел правильной формы.

    Определение объемов тел неправильной формы.

    Устройство и принцип работы рычажных весов.

    Как изменится результат определения массы одного и того же тела на рычажных весах при переносе их с Земли на Луну.

Лабораторная работа № 5

Определение плотности

методом пикномера

Оборудование : пикнометр, электрические весы, дистиллированная вода, исследуемая жидкость, кусочки исследуемого твердого тела.

Цель : освоить определение плотности методом пикнометра, закрепить навыки работы с весами.

Краткая теория работы

Пикнометр представляет собой сосуд строго определенного неизменного объема. Пикнометры, почти всегда изготавливающиеся из стекла (вследствие его малой химической активности), имеют весьма разнообразные формы.

Спомощью пикнометра определяется как плотность жидкости, так и плотность твердого вещества. Измерение плотности пикнометром основано на взвешивании находящегося в нем вещества, заполняющего пикнометр до метки на горловине.

Плотность жидкости может быть определена из поочередного взвешивания пустого пикнометра, пикнометра с дистиллированной водой и пикнометра с исследуемой жидкостью.

Пусть масса пикнометра будет – m , масса пикнометра, наполненного исследуемой жидкостью – М , масса пикнометра, наполненного дистиллированной водой – М `, тогда масса исследуемой жидкости будет (М m ), а масса дистиллированной воды – (М `–m ). Плотность жидкости, вследствие равенства объемов, определится по формуле:

. (5.1)

где ρ ` – плотность дистиллированной воды при данной температуре.

Но нами не учтен тот факт, что взвешивание производится в воздухе. Выведем точную формулу, учитывающую плотность воздуха. Введем следующие обозначения: V – внутренний объем пикнометра (его емкость), ρ ` – плотность дистиллированной воды при температуре опыта (см. табл. приложение I), ρ – истинная плотность исследуемой жидкости, ρ в – плотность воздуха (ρ в =0.0012 г/см 3), ρ p – плотность разновесок. Тогда V ρ будет истинная масса жидкости, заключенной в пикнометре; V ρ `– истинная масса воды в том же объеме; V ρ в – масса воздуха, вытесняемого исследуемой жидкостью или дистиллированной водой из пикнометра;
или
масса воздуха, вытесняемого разновесками, уравновешивающими соответственно исследуемую жидкость или дистиллированную воду. На основании факта равновесия весов для исследуемой жидкости имеем:

или

. (5.2)

Аналогично для дистиллированной воды:

(5.3)

Относя равенство (5.2) к равенству (5.3), имеем:

,

или, учитывая (5.1):

(5.4)

Формула (5.4) позволяет определить с помощью пикнометра плотность какой-либо жидкости.

Если имеется твердое вещество в виде большого числа достаточно мелких кусочков неправильной формы, нерастворимое в воде, в этом случае плотность также можно определить методом пикнометра.

Пусть m – масса по возможности большего количества кусочков исследуемого твердого тела, масса пикнометра с дистиллированной водой M 1 , М – масса пикнометра с дистиллированной водой и кусочками твердого тела (при помещении кусочков твердого тела в пикнометр излишки воды, поднявшиеся выше риски, убрать с помощью фильтровальной бумаги). Объем кусочков твердого тела (m / ρ 1) будет равен объему вытесненной воды
т.е.
, откуда плотность твердого тела без учета поправки на воздух будет:

(5.5)

Здесь ρ ` – плотность дистиллированной воды при данной температуре. Для учета поправки на воздух введем следующие обозначения: V– суммарный объем кусочков твердого тела, ρ – их истинная плотность, ρ в – плотность воздуха, ρ p – плотность разновесок. Тогда (V ρ ) – истинная масса кусочков исследуемого тела, (V ρ `) – истинная масса вытесненной ими воды, (V ρ в) – масса воздуха, вытесненного кусочками твердого тела или водой в том же объеме; (m / ρ р) ρ в – масса воздуха, вытесненного разновесками, уравновешивающими кусочки;
– масса воздуха, вытесненного разновесками, уравновешивающими воду. Отсюда для кусочков исследуемого тела

Аналогично для воды: (5.7)

Деля почленно равенство (5.6) на (5.7), получим

откуда
(5.8)

Выражение (5.8) позволяет определить методом пикнометра плотность твердого тела.

Задание:

1. Продумать ход и наметить план эксперимента (объект исследования задается преподавателем).

2. Подготовить форму отчета.

5. Оформить отчет.

Тема : определение плотности твердых тел.

Приборы и принадлежности : штангенциркуль, мензурка с дополнительной шкалой, вода, весы, разновесы, твердое тело в форме цилиндра, твердое тело неправильной формы.

Цель работы : научиться пользоваться весами, закрепить навыки работы со штангенциркулем.

I. Определение плотности цилиндра

Обозначения:

h – высота цилиндра

d – диаметр цилиндра

Расчетные формулы

Плотность вычисляется по формуле:

где – объем цилиндра.

Вывод формул погрешностей объема

Прологарифмируем формулу расчета объема цилиндра

Полученную логарифмированием формулу продифференцируем

Проделаем замену «d» на «∆», а «–» на «+». Тогда относительная и абсолютная погрешности соответственно будут равны:

.

Вывод формулы погрешностей плотности

Прологарифмируем выражение для определения плотности цилиндра, получаем:

.

Дифференцированием получаем:

.

Меняя «d » на «D» и знак «–» на «+», получаем формулы погрешностей:

Примечания : Величины погрешностей диаметра, высоты и массы вычисляются как погрешности прямых измерений. В формулы расчета погрешностей входят величины, которые определяются так:

Ход работы

1. Измеряем линейные размеры цилиндра.

2. Измеряем массу цилиндра.

3. Рассчитываем средние значения и абсолютные погрешности высоты, диаметра, массы.

4. Рассчитываем значения величин и абсолютных и относительных погрешностей объема и плотности цилиндра.

Для объема и плотности находятся сразу средние значения погрешностей.

№ опыта h , см d ц, см m , г V ц, см 3 r, г/см 3
Среднее Знач.
№ опыта Dh , см Dd ц, см Dm , г DV , см 3 e v ,% Dρ, г/см 3 e ρ ,%
Ср. знач.

II. Определение плотности твердого

Тела неправильной формы

Ход работы

1. В мензурку наливаем воду до определенного уровня. Опускаем цилиндр в мензурку, при этом уровень воды поднимается на N делений. Цена деления мензурки . Вынимаем цилиндр из мензурки.

2. Опускаем в мензурку твердое тело неправильной формы. Обьем , где n – число делений, на которое поднялась вытесненная телом вода. За абсолютную погрешность можно принять . Тогда относительная погрешность:

3. Взвешиваем тело и определяем массу: ;

4. Абсолютная погрешность массы:

5. Плотность определяется по формуле: ρ=m/V т

Абсолютная и относительная погрешности, как и в случае цилиндра будут:

Вывод: окончательные значения объема и плотности цилиндра:

V ц =(70.69±0.62)см 3

ρ ц =(1.56±0.01)см 3

Значения объема и плотности тела неправильной формы:

V =(25.25±0.25)см 3

ρ =(3.96±0.04)г/см 3

Значения V и ρ записаны с точностью до 2-го знака, т.к. в расчет входят величины (высота и диаметр), которые могут быть определены лишь с такой точностью.

Погрешность объема тела неправильной формы косвенным образом связана с погрешностью объема цилиндра, следовательно, первая не может быть меньше второй. Таким образом, запись обьема тела неправильной формы нельзя считать верной.

В этом случае необходим следующий расчет:

.

Считая N и n постоянными, имеем DV т = DV ц =0.62см 3 , e= DV ц /V т =2.56%, т.е. V т =(25.25±0.62)см 3 .

Контрольные вопросы

1. Масса и плотность тела.

2. Определение объемов тел правильной формы.

3. Определение объемов тел неправильной формы.

4. Устройство и принцип работы рычажных весов.

5. Как изменится результат определения массы одного и того же тела на рычажных весах при переносе их с Земли на Луну.

Лабораторная работа № 5

Определение плотности

Методом пикномера

Оборудование : пикнометр, электрические весы, дистиллированная вода, исследуемая жидкость, кусочки исследуемого твердого тела.

Цель : освоить определение плотности методом пикнометра, закрепить навыки работы с весами.

Краткая теория работы

Пикнометр представляет собой сосуд строго определенного неизменного объема. Пикнометры, почти всегда изготавливающиеся из стекла (вследствие его малой химической активности), имеют весьма разнообразные формы.

С помощью пикнометра определяется как плотность жидкости, так и плотность твердого вещества. Измерение плотности пикнометром основано на взвешивании находящегося в нем вещества, заполняющего пикнометр до метки на горловине.

Плотность жидкости может быть определена из поочередного взвешивания пустого пикнометра, пикнометра с дистиллированной водой и пикнометра с исследуемой жидкостью.

Пусть масса пикнометра будет – m , масса пикнометра, наполненного исследуемой жидкостью – М , масса пикнометра, наполненного дистиллированной водой – М `, тогда масса исследуемой жидкости будет (М m ), а масса дистиллированной воды – (М `–m ). Плотность жидкости, вследствие равенства объемов, определится по формуле:

. (5.1)

где ρ ` – плотность дистиллированной воды при данной температуре.

Но нами не учтен тот факт, что взвешивание производится в воздухе. Выведем точную формулу, учитывающую плотность воздуха. Введем следующие обозначения: V – внутренний объем пикнометра (его емкость), ρ ` – плотность дистиллированной воды при температуре опыта (см. табл. приложение I), ρ – истинная плотность исследуемой жидкости, ρ в – плотность воздуха (ρ в =0.0012 г/см 3), ρ p – плотность разновесок. Тогда V ρ будет истинная масса жидкости, заключенной в пикнометре; V ρ `– истинная масса воды в том же объеме; V ρ в – масса воздуха, вытесняемого исследуемой жидкостью или дистиллированной водой из пикнометра; или масса воздуха, вытесняемого разновесками, уравновешивающими соответственно исследуемую жидкость или дистиллированную воду. На основании факта равновесия весов для исследуемой жидкости имеем:

или

. (5.2)

Аналогично для дистиллированной воды:

(5.3)

Относя равенство (5.2) к равенству (5.3), имеем:

,

или, учитывая (5.1):

(5.4)

Формула (5.4) позволяет определить с помощью пикнометра плотность какой-либо жидкости.

Если имеется твердое вещество в виде большого числа достаточно мелких кусочков неправильной формы, нерастворимое в воде, в этом случае плотность также можно определить методом пикнометра.

Пусть m – масса по возможности большего количества кусочков исследуемого твердого тела, масса пикнометра с дистиллированной водой M 1 , М – масса пикнометра с дистиллированной водой и кусочками твердого тела (при помещении кусочков твердого тела в пикнометр излишки воды, поднявшиеся выше риски, убрать с помощью фильтровальной бумаги). Объем кусочков твердого тела (m / ρ 1) будет равен объему вытесненной воды т.е. , откуда плотность твердого тела без учета поправки на воздух будет:

(5.5)

Здесь ρ ` – плотность дистиллированной воды при данной температуре. Для учета поправки на воздух введем следующие обозначения: V– суммарный объем кусочков твердого тела, ρ – их истинная плотность, ρ в – плотность воздуха, ρ p – плотность разновесок. Тогда (V ρ ) – истинная масса кусочков исследуемого тела, (V ρ `) – истинная масса вытесненной ими воды, (V ρ в) – масса воздуха, вытесненного кусочками твердого тела или водой в том же объеме; (m / ρ р) ρ в – масса воздуха, вытесненного разновесками, уравновешивающими кусочки; – масса воздуха, вытесненного разновесками, уравновешивающими воду. Отсюда для кусочков исследуемого тела

Аналогично для воды: (5.7)

Деля почленно равенство (5.6) на (5.7), получим

откуда (5.8)

Выражение (5.8) позволяет определить методом пикнометра плотность твердого тела.

Задание:

1. Продумать ход и наметить план эксперимента (объект исследования задается преподавателем).

2. Подготовить форму отчета.

5. Оформить отчет.

Порядок взвешивания


    Определение плотности твер-дых тел неправильной формы

    Отмеченная выше характеристика твердых тел говорит о том, что их объем не может быть подсчитан произведением данных, полу-ченных при измерении таких параметров, как длина, ширина и т. д. Вместо этого может быть применен другой прием определения величины V, например вытеснение. Примера-ми твердых тел неправильной формы могут служить камень, который имеет плотность выше, чем вода, и пробка, которая менее плот-на, чем вода.

    Определение плотности камня .
    Измери-тельный цилиндр, размеры которого доста-точны для помещения в него камня, напол-ните частично водой (рис. 2.5, а). Отметьте объем V воды в измерительном цилиндре и запишите его в см, а не в мл. Было бы разумно выбрать такое количество воды, что-бы ее исходный объем V 1 выражался в ка-честве целого числа, например 20 или 30 см 3 , чтобы потом легче было производить вычитание. Определите массу камня m при помощи весов. Затем привяжите к камню нитку и ос-торожно опустите его в воду, чтобы он пол-ностью погрузился в нее. (Как вы думаете, почему используется нитка, а не проволока?) Уровень воды поднимется и покажет объем V 2 , который вы считываете со шкалы измери-тельного цилиндра. Этот объем является сум-марным объемом воды и камня. Следователь-но, объем V камня определяется из форму-лы V = V 2 - V 1 .

    Примечание . Объем используемой воды не изменился, но камень занял часть объема, который был заполнен водой, и поэтому уро-вень воды поднялся.

    Плотность у камня может быть подсчи-тана по формуле:

    Этот метод работает лишь для твердых тел, которые не растворяются в воде. Если в воду помещено растворимое твердое тело, то уровень воды может вообще не поднять-ся. Молекулы этого твердого тела распре-делятся равномерно по объему и внедрятся в «пространство» между молекулами воды.

    Пробка . Для того чтобы определить объем твердого тела, плавающего в воде, например пробки, к нему следует прикрепить грузило, которое обеспечивает полное погружение пробки. Наполните отливной сосуд водой и дайте ей вытечь так, чтобы уровень воды в сосуде находился точно на уровне стока (рис. 2.5, б). Поместите измерительный ци-линдр под стоком. Затем прикрепите нить к грузилу и аккуратно опустите его в воду до полного погружения. Объем V 1 грузила заста-вит вытечь равный ему объем воды в изме-рительный сосуд. Объем V 1 , воды в измери-тельном цилиндре равен объему грузила. За-тем определите массу m пробки при помощи весов. Свяжите вместе пробку и грузило и опустите эту пару твердых веществ в воду в сосуде. Вода снова перельется через сток в измерительный сосуд, на этот раз в коли-честве, равном объему пробки. Объем V 2 во-ды в измерительном цилиндре представляет собой объем пробки и грузила. Объем V пробки подсчитывается по формуле V = V 2 — V 1 . Таким образом, плотность проб-ки представляет собой.