Сила сопротивления воздуха обозначение. Аэродинамическое сопротивление автомобиля

1. Движение АТС связано с перемещением частиц воздуха, на которое расходуется часть мощности двигателя. эти затраты складываются из следующих составляющих:

2. Лобового сопротивления, появляющееся из-за разности давлений спереди и сзади движущегося автомобиля (55-60% сопротивления воздуха).

3. Сопротивление, создаваемое выступающими частями – зеркало заднего вида и т.д. (12-18%).

4. Сопротивление, возникающее при прохождении воздуха через радиатор и подкапотное пространство.

5. Сопротивление из-за трения близлежащих поверхностей о слои воздуха (до 10%).

6. Сопротивление, вызваное разностью давлений сверху и снизу автомобиля (5-8%).

Для упрощения расчетов сопротивления воздуха, распределенное по всей поверхности автомобиля сопротивление заменяем силой сопротивления воздуха приложеной в одной точке, называемой центром парусности автомобиля.

Опытом устанавлено, что сила сопротивления воздуха зависит от следующих факторов:

От скорости движения автомобиля, причем данная зависимость носит квадратических характер;

От лобовой площади автомобиля F ;

От коэффициента обтекаемости К в , который числено равен силе сопротивления воздуха, созхдаваемой одним квадратным метром лобовой площади АТС при движении его со скоростью 1 м/с.

Тогда сила сопротивления воздушной среды .

При определении F используют эмпирические формулы, определяющие приблизительную площадь сопротивления. Для грузовых автомобилей F обычно: F=H×B (произведение высоты и ширины), аналогично для автобусов. Для легковых автомобилей принимают F=0,8H×B . Существуют иные формулы, где учитывают колею автомобиля, вероятность изменения высоты АТС и др. Произведение К в ×F называют фактором обтекаемости и обозначают W .

Для определения коэффициента обтекаемости используют специальные устройства либо метод выбега, заключающийся в определении изменения пути свободнокатящегося авотмобиля при движении с различной начальной скоростью. При движении автомобиля в воздушном потоке силу сопротивления воздуха Р в возможно разложить на составляющие по осям АТС. При этом формулы для определения проекций сил отличаются лишь коэфициентами, учитывающими распределение силы по осям. Коэффициент обтекаемости возможно определить из выражения:

где С Х – коэффициент, определяемый опытным путем и учитывающий распределение силы сопротивления воздуха по оси "х". Этот коэффициент получают путем продувки в аэродинамической трубе, ;

r - плотность воздуха, согласно ГОСТ r=1,225 кг/м 3 на нулевой отметке.

Получаем .

Произведение представляет собой скоростной напор, равный кинетической энергии кубического метра воздуха, движущегося со скоростью движения автомобиля относительно воздушной среды.

Коэффициент К в имеет размерность .

Между К в и С Х существует зависимость: К в =0,61С Х .

Прицеп на АТС увеличивает силу сопротивления в среднем на 25%.

вследствие торможения перед телом скорость потока уменьшается, а давление увеличивается. Степень его увеличения зависит от формы передней части тела. Пе­ред плоской пластинкой давление больше, чем перед каплевидным телом. За телом, вследствие разрежения, давление уменьшается, при этом у плоской пластинки па большую величину по сравнению с каплевидным телом.

Таким образом, перед телом и за ним образуется разность давлений, в результате чего создается аэроди­намическая сила, называемая сопротивлением давления. Кроме этого, из-за трения воздуха в пограничном слое возникает аэродинамическая сила, которая называется сопротивлением трения.

При симметричном обтекании тела сопротивление

давления и сопротивление трения направлены в сторо­ну, противоположную движению тела, и вместе состав­ляют силу лобового сопротивления. Опытами установлено, что аэродинамическая сила зависит от скорости потока, массовой плотности возду­ха, формы и размеров тела, положения его в потоке и состояния поверхности. При повышении скорости набегающего потока его кинетическая энергия, которая пропорциональна квад-рату скорости, увеличивается. Поэтому при обтекании плоской пластины, направленной перпендикулярно по-току, с увеличением скорости давление в передней час-


ти ее возрастает, так как большая часть кинетической энергии потока при торможении переходит в потенци­альную энергию давления. При этом за пластинкой дав­ление еще больше уменьшается, так как из-за увеличе­ния инертности струи увеличивается протяженность области пониженного давления. Таким образом, при по­вышении скорости потока из-за увеличения разности дав­ления перед телом и за ним пропорционально квадрату скорости возрастает аэродинамическая сила сопротив­ления.

Ранее было установлено, что плотность воздуха ха­рактеризует инертность его: чем больше плотность, тем больше инертность. Для движения тела в более инерт­ном, а следовательно, в более плотном воздухе требует­ся приложить больше усилий для сдвига частиц возду­ха, а это значит, что и воздух будет с большей силой воздействовать на тело. Следовательно, чем выше плот­ность воздуха, тем больше аэродинамическая сила, дей­ствующая на движущееся тело.

В соответствии с законами механики величина аэро-динамической силы пропорциональна площади сечения тела, перпендикулярного к направлению действия дан­ной силы. Для большинства тел таким сечением явля­ется наибольшее поперечное сечение, называемое миде­лем, а для крыла - площадь его в плане.

Форма тела влияет на характер аэродинамического спектра (скорость струек, обтекающих данное тело), а следовательно, и на разность давлений, что определяет величину аэродинамической силы. При изменении поло­жения тела в воздушном потоке изменяется его спектр обтекания, что влечет за собой изменение величины и направления аэродинамических сил.

Тела, имеющие менее шероховатую поверхность, ис­пытывают меньшие силы трения, так как на большей части поверхности их пограничный слой имеет ламинар­ное течение, в котором сопротивление трения меньше, чем в турбулентном.

Таким образом, если влияние формы и положения
тела в потоке, степень обработки его поверхности учесть
поправочным коэффициентом, который называется аэро­
динамическим коэффициентом, то можно сделать вывод,
что аэродинамическая сила прямо пропорциональна сво-
ему коэффициенту, скоростному напору и площади ми-
деля тела (у крыла -его площади),


Если обозначить полную-аэродинамическую силу со­противления воздуха буквой R, аэродинамический коэф­фициент ее - скоростной напор - q, а площадь кры­ла- то формулу сопротивления воздуха можно запи­сать следующим обвазом:


атак как скоростной напор равен

иметь вид:


формула будет


Приведенная формула силы сопротивления воздуха шляется основной, так как по аналогичным ей форму-пай можно определить величину любой аэродинамиче-кой силы, заменив только обозначение силы и ее ко­эффициента.

Полная аэродинамическая сила и ее составляющая

Поскольку кривизна крыла сверху больше, чем сни-зу, то при встрече его с воздушным потоком согласно закону постоянства секундного расхода воздуха, мест­ная скорость обтекания крыла вверху больше, чем вни­зу, а у ребра атак она резко уменьшается и в отдельных точках падает до нуля. Согласно закону Бернулли пе­ред крылом и под ним возникает область повышенного давления; над крылом и за ним возникает область по­ниженного давления. Кроме того, вследствие вязкости воздуха. возникает сила, трения в пограничном слое. Кар-тина распределения давлений по профилю крыла зави­сит от положения крыла в воздушном потоке, для ха­рактеристики которого пользуются понятием «угол атаки».

Углом, атаки крыла (α) называется угол, заключен­ный между направлением хорды крыла и набегающим потоком воздуха или направлением вектора скорости по­лета, (рис. 11).

Распределение давления по профилю изображается и виде векторной диаграммы. Для ее построения вычер­чивают профиль крыла, размечают на нем точки, в ко-



торых измерялось давление, и от этих точек векторами откладывают величины избыточных давлений. Ноли в данной точке давление пониженное, то стрелку вектора направляют от профиля, если же давление повышенное, то к профилю. Концы векторов соединяют общей лини­ей. На рис. 12 изображена картина распределения дав­лений по профилю крыла на малых и больших углах атаки. Из нее видно, что наибольшее разрежение полу­чается на верхней поверхности крыла в месте макси­мального сужения струек. При угле атаки, равном ну­лю, наибольшее разрежение будет в месте наибольшей толщины профиля. Под крылом также происходит су­жение струек, в результате чего и там будет зона раз­режения, но меньшая, чем над крылом. Перед носком крыла - область повышенного давления.

При увеличении угла атаки зона разрежения смеща­ется к ребру атаки и значительно увеличивается. Это происходит потому, что место наибольшего сужения струек перемещается к ребру атаки. Под крылом час­тицы воздуха, встречая нижнюю поверхность крыла, притормаживаются, в результате чего давление повы­шается.

Каждый вектор избыточного давления, изображен­ный на диаграмме, представляет собой силу, действую­щую на единицу поверхности крыла, то есть каждая стрелка обозначает в определенном масштабе величину избыточного давления, или разность между местным давлением и давлением в невозмущенном потоке:

Просуммировав все векторы, можно получить аэро­динамическую силу без учета сил трения. Данная сила с учетом силы трения воздуха в пограничном слое сос­тавит полную аэродинамическую силу крыла. Таким образом, полная аэродинамическая сила (R) возникает ко причине разности давлений перед крылом и за ним, под крылом и над ним, а также в результате трения воздуха в пограничном слое.

Точка приложения полной аэродинамической силы находится на хорде крыла и называется центром дав­ления (ЦД). Поскольку полная аэродинамическая сила действует в сторону меньшего давления, то она будет направлена вверх и отклонена назад.

В соответствии с основным законом сопротивления

Рис. 13. Разложение полной аэродинамической силы крыла на сос­тавляющие

воздуха полная аэродинамическая сила выражается фор­мулой:

Полную аэродинамическую силу принято рассмат­ривать как геометрическую сумму двух составляющих: одна из них, У, перпендикулярная невозмущенному по­току, называется подъемной силой, а другая, Q, на­правленная противоположно движению крыла, называ­ется силой лобового сопротивления.

Каждую из этих сил можно рассматривать как алгеб­раическую сумму двух слагаемых: силы давления и си­лы трения. Для подъемной силы практически можно пренебречь вторым слагаемым и считать, что она явля­ется только силой давления. Сопротивление же нужно рассматривать как сумму сопротивления давления и сопротивления трения (рис. 13).

Угол, заключенный между векторами подъемной си­лы и полной аэродинамической силы, называется углом Качества (Θк).


Подъемная сила крыла

Подъемная сила (У) создается за счет разности средних давлений снизу и сверху крыла.

При обтекании несимметричного профиля скорость потока над крылом больше, чем под крылом, вследствие большей кривизны верхней поверхности крыла и, в со­ответствии с законом Бернулли, давление сверху оказы­вается меньше, чем снизу.

Если профиль крыла симметричный и угол атаки равен нулю, то обтекание является симметричным, дав­ление над крылом и под ним одинаковое и подъемной силы не возникает (рис. 14). Крыло симметричного про­филя создает подъемную силу только при отличном от нуля угле атаки.



Отсюда следует, что величина подъемной силы рав­на произведению разности избыточных давлений под крылом (Ризб.нижн) и над ним (Ризб. верхн) на площадь крыла:

С Y -коэффициент подъемной силы, который опре­деляется опытным путем при продувке крыла в аэроди­намической трубе. Величина его зависит: 1 - от формы крыла, которая принимает главное участие в создании подъемной силы; 2 - от угла атаки (ориентировка кры­ла относительно потока); 3 - от степени обработки крыла (отсутствие шероховатостей, целостность мате­риала и пр.).

Если по данным продувки крыла несимметричного профиля в аэродинамической трубе на различных уг­лах атаки построить график, то он будет выглядеть следующим образом (рис. 15).

Из него видно, что:

1. При некотором отрицательном значении угла ата­ки коэффициент подъемной силы равен нулю. Это угол аыки нулевой подъемной силы и обозначается он α0.

2. С увеличением угла атаки до некоторого значения



Рис. 14. Обтекание кры­ла дозвуковым потоком: а - спектр обтекания (пограничный слой не показан); б - распреде­ление давления (картина давления)

Рис. 15. График зависи­
мости коэффициента
подъемной силы и коэф­
фициента лобового со­
противления от угла
атаки.


Рис, 16. Срыв потока на закритических углах атаки: в точке А давление больше, чем в точке Б, а в точке В давление больше, чем в точках А и Б

коэффициент подъемной силы возрастает пропорцио­нально (по прямой линии), после некоторого значения угла атаки прирост коэффициента подъемной силы уменьшается, что объясняется образованием завихрений на верхней поверхности.

3. При определенном значении угла атаки коэффи­циент подъемной силы достигает максимального значе­ния. Этот угол называется критическим и обозначается α кр. Затем при дальнейшем увеличении угла атаки ко­эффициент подъемной силы уменьшается, что происходит из-за интенсивного срыва потока с крыла, вызванного движением пограничного слоя против движения основ­ного потока (рис. 16).

Диапазон эксплуатационных углов атаки составляют углы от α 0 до α кр. На углах атаки, близких к критиче­ским, крыло не обладает достаточной устойчивостью и плохо управляется.

В процессе проектирования и создания конструкторами очень тщательно прорабатывается аэродинамика автомобиля, поскольку она оказывает значительное влияние на технические показатели модели.

При движении автомобиля большая часть мощности силовой установки уходит на преодоление сопротивления, создаваемого воздухом. И правильно созданная аэродинамика автомобиля позволяет уменьшить это сопротивление, а значит на борьбу с противодействием находящего воздушного потока потребуется затратить меньше мощности, и соответственно – топлива.

Измерение аэродинамики автомобиля проводится для изучения сил, создаваемых воздушным потоком и воздействующих на транспортное средство. И таких сил несколько – подъемные и боковые, а также лобовое сопротивление.

Лобовое сопротивление и коэффициент Сх

По большей части все работы с кузовом авто направлены на преодоление лобового сопротивления, поскольку именно эта сила самая значительная.

Движение потоков воздуха

За основу при расчетах берется сила сопротивления воздуха. Для вычисления результата используются такие данные как плотность воздуха, площадь поперечной проекции авто, коэффициент аэродинамического сопротивления (Сх) - это важнейший показатель в аэродинамике автомобиля. При этом на силу сопротивления в значительной мере влияет также скорость движения. Так, увеличение скорости вдвое будет сопровождаться повышением сопротивлением в 4 раза. Скорость один из мощных факторов увеличения расхода.

Например, для хорошо обтекаемого авто с площадью проекции 2 м 2 и коэффициентом 0,3 при движении на скорости 60 км/ч для преодоления сопротивления воздуха необходимо 2,4 л.с., а при скорости 120 км/ч уже 19,1 л.с. Разница расхода топлива при таких условиях достигает 30% на 100 км.

Если вам, в данный момент, требуется максимальная экономия топлива, необходимо придерживаться постоянной скорости около 60 км/ч. В этом режиме движения расход будет минимальным даже у авто с большим Cx.

Рассмотрим все по-простому. У воздуха есть своя плотность, причем немалая. При движении автомобилю приходится проходить через имеющиеся воздушные массы, при этом создается поток, который обтекает кузов. И чем легче авто будет «резать» воздушную массу, тем меньше он затратит на это энергии.

Но не все так просто. Во время движения перед авто создается область увеличенного давления (машина сжимает воздушную массу), то есть спереди образуется такой себе невидимый барьер, осложняющий «разрезание» воздушной массы.

Также после обтекания кузова происходит отрыв воздушного потока от поверхности, что становиться причиной появления завихрений и разрежения за авто. В сочетании с повышенным давлением возникающее разрежение еще больше увеличивает сопротивление.

Поскольку повлиять на плотность воздуха невозможно, то конструкторам остается только вносить коррективы в две другие расчетные составляющие – площадь авто и коэффициент аэродинамического сопротивления.

Но уменьшить проекцию авто не представляется особо возможным без ущерба для полезных пространств кузова (просто невозможно сделать авто меньше, чем он есть), поэтому остается только изменение коэффициента Сх.

Этот коэффициент устанавливается экспериментальным путем (в аэродинамической трубе) и характеризует он соотношение лобового сопротивления к скоростному напору и площади поперечного сечения кузова. Величина его безразмерная.

Аэродинамическая труба

Наименьший коэффициент аэродинамического сопротивления имеет каплевидное тело. При движении в воздушной массе такое тело плавно перед собой разводит поток, не создавая области повышенного давления, а имеющийся «хвост» позволяет за собой сомкнуть поток без обрывов и завихрений, то есть разрежение тоже отсутствует. Получается, что воздух просто обтекает тело, создавая минимальное сопротивление. Для такого тела коэффициент Сх составляет всего 0,05.

Конструкторам, работая с аэродинамикой автомобиля добиться, таких показателей пока не удается. И все потому, что при движении сопротивление создается несколькими факторами:

  • Формой кузова;
  • Трением потока о поверхности при обтекании;
  • Попаданием потока в подкапотное пространство и салон.

Поэтому для современных авто коэффициент аэродинамического сопротивления считается отличным, если его значение ниже 0,3. К примеру, у Peugeot 308 коэффициент составляет 0,29, у Audi A2 он равен 0,25, а у Toyota Prius – 0,26. Но стоит отметить, что это расчетные показатели в идеальных условиях. На практике же во время движения на авто воздействуют множество разнообразных факторов, которые негативным образом сказываются на сопротивлении кузова.

Примечательно, что на коэффициент оказывает наибольшее влияние не передок авто, а его задняя часть. И виной этому становится создание разрежения и завихрений в результате отрыва потока от кузова. Поэтому конструкторы по большей части занимаются приданием необходимой формы именно задней части.

Коэффициент сопротивления Volkswagen XL1 составляет всего 0,19

Снизить коэффициент Сх позволяет также уменьшение количества выступающих частей, причем везде на авто (бока, крыша, днище, передок), а тем элементам, которые не удается убрать с поверхности придается максимально возможная обтекаемая форма.

Подъемная и прижимная сила

В результате неравномерного обтекания потоком воздуха автомобиля с разных сторон возникает разница в скорости его движения.

Действующие подъемная и прижимная силы

Автомобиль движется и рассекает поток воздуха, при этом часть этого потока уходит под авто и проходит под днищем, то есть движется практически по прямой. А вот верхней части потока приходится повторять форму кузова, и ей приходится проходить большее расстояние. Из-за этого возникает разница в скорости воздуха – верхняя часть движется быстрее нижней, проходящей под авто. А поскольку увеличение скорости сопровождается снижением давления, то под днищем образуется зона повышенного давления, которая приподнимает машину.

Проблем добавляет и лобовое сопротивление. Область повышенного давления воздушной массы перед машиной прижимает передок к дороге, в то время как разрежение и завихрения позади наоборот – способствуют приподнятию кузова. Подъемная сила, как и лобовое сопротивление, возрастает при увеличении скорости движения.

Негативным фактором от воздействия такой силы является ухудшение устойчивости авто при увеличении скорости и повышение вероятности ухода в занос.

Но эта сила может оказывать и положительное действие. При внесении корректив в конструкцию авто возможно преобразование подъемной силы в прижимную, которая будет обеспечивать лучшее сцепление с дорогой, устойчивость авто, его управляемость на высоких скоростях.

При этом для получения прижимной силы не требуется каких-либо отдельных решений. Все разработки, направленные на снижение коэффициента Сх также сказываются и на прижиме. К примеру, оптимизация формы задней части приводит к уменьшению завихрений и разрежения, из-за чего подъемная сила тоже снижается, а прижимная - повышается. Установка заднего спойлера действует таким же образом.

Уменьшение завихрений при установке спойлера

Боковые же силы при установлении аэродинамики автомобиля, особо в расчет не берутся, в силу того, что они не постоянны, а также значительного влияния на показатели авто не оказывают.

Но это все теория аэродинамики автомобиля. На практике все можно пояснить одним предложением - чем хуже аэродинамика, тем выше расход топлива.

Что ещё влияет на аэродинамику?

Конечно, конструкторы стараются по максимуму снизить сопротивление авто при движении и повысить прижимную силу. Но особенности эксплуатации авто и свой взгляд автовладельцев на внешние особенности машины вносят свои коррективы, причем в некоторых случаях – значительны.

Аэродинамическое сопротивление разных автомобилей в зависимости от скорости

К примеру, установка багажника на крышу, даже с аэродинамической формой увеличивает поперечную проекцию авто и сильно влияет на обтекаемость, это сразу сказывается на потреблении топлива.

Также расход повышается от езды с открытыми окнами и люком, использование защитных и декоративных обвесов, перевозка негабаритных грузов, выступающих за авто, нарушение положения конструктивных элементов, расположенных под днищем, повышение клиренса.

Но автовладелец также может и внести коррективы, которые положительно повлияют на аэродинамику автомобиля. К ним относится использование аэродинамических обвесов, установка спойлера, уменьшение клиренса.

При движении любого предмета по поверхности или в воздухе возникают силы, препятствующие этому. Их называют силами сопротивления или трения. В этой статье мы расскажем, как найти силу сопротивления, и рассмотрим факторы, влияющие на нее.

Для определения силы сопротивления необходимо воспользоваться третьим законом Ньютона. Эта величина численно равна силе, которую нужно приложить, чтобы заставить равномерно двигаться предмет по ровной горизонтальной поверхности. Это можно сделать при помощи динамометра. Сила сопротивления вычисляется по формуле F=μ*m*g. Согласно этой формуле, искомая величина прямо пропорциональна массе тела. Стоит учесть, что для правильного подсчета необходимо выбрать μ – коэффициент, зависящий от материала, из которого изготовлена опора. Принимают во внимание и материал предмета. Этот коэффициент выбирается по таблице. Для расчета используется постоянная g, которая равна 9,8 м/с2. Как рассчитать сопротивление, если тело движется не прямолинейно, а по наклонной плоскости? Для этого в первоначальную формулу нужно ввести cos угла. Именно от угла наклона зависит трение и сопротивление поверхности тел к движению. Формула для определения трения по наклонной плоскости будет иметь такой вид: F=μ*m*g*cos(α). Если тело движется на высоте, то на него действует сила трения воздуха, которая зависит от скорости движения предмета. Искомую величину можно рассчитать по формуле F=v*α. Где v – скорость движения предмета, а α – коэффициент сопротивления среды. Эта формула подходит исключительно для тел, которые передвигаются с небольшой скоростью. Для определения силы сопротивления реактивных самолетов и других высокоскоростных агрегатов применяют другую – F=v2*β. Для расчета силы трения высокоскоростных тел используют квадрат скорости и коэффициент β, который рассчитывается для каждого предмета отдельно. При движении предмета в газе или жидкости при расчете силы трения необходимо учитывать плотность среды, а также массу и объем тела. Сопротивление движению существенно снижает скорость поездов и автомобилей. Причем на движущие предметы действует два вида сил – постоянные и временные. Общая сила трения представлена суммой двух величин. Для снижения сопротивления и повышения скорости машины конструкторы и инженеры изобретают разнообразные материалы со скользящей поверхностью, от которой воздух отталкивается. Именно поэтому передняя часть скоростных поездов имеет обтекаемую форму. Рыбы очень быстро движутся в воде благодаря обтекаемому телу, покрытому слизью, которая снижает трение. Не всегда сила сопротивления отрицательно сказывается на движении машин. Чтобы вытащить автомобиль из грязи, необходимо под колеса насыпать песок или щебень. Благодаря увеличению трения авто отлично справляется с болотистой почвой и грязью.

Сопротивление движения в воздухе используется во время прыжков с парашютом. В результате возникающего трения между куполом и воздухом скорость движения парашютиста снижается, что позволяет без ущерба для жизни заниматься парашютным спортом.

Инструкция

Найдите силу сопротивления движению, которая действует на равномерно прямолинейно движущееся тело. Для этого при помощи динамометра или другим способом измерьте силу, которую необходимо приложить к телу, чтобы оно двигалось равномерно и прямолинейно. По третьему закону Ньютона она будет численно равна силе сопротивления движения тела.

Определите силу сопротивления движению тела, которое перемещается по горизонтальной поверхности. В этом случае сила трения прямо пропорциональна силе реакции опоры, которая, в свою очередь равна силе тяжести, действующей на тело. Поэтому сила сопротивления движению в этом случае или сила трения Fтр равна произведению массы тела m, которая измеряется весами в килограммах, на ускорение свободного падения g≈9,8 м/с² и коэффициент пропорциональности μ, Fтр=μ∙m∙g. Число μ называется коэффициентом трения и зависит от поверхностей, входящих в контакт при движении. Например, для трения стали по дереву этот коэффициент равен 0,5.

Рассчитайте силу сопротивления движению тела, движущегося по . Кроме коэффициента трения μ, массы тела m и ускорения свободного падения g, она зависит от угла наклона плоскости к горизонту α. Чтобы найти силу сопротивления движению в этом случае, нужно найти произведения коэффициента трения, массы тела, ускорения свободного падения и косинуса угла, под которым плоскость к горизонту Fтр=μ∙m∙g∙сos(α).

При движении тела в воздухе на невысоких скоростях сила сопротивления движению Fс прямо пропорциональна скорости движения тела v, Fc=α∙v. Коэффициент α зависит от свойств тела и вязкости среды и рассчитывается отдельно. При движении на высоких скоростях, например, при падении тела со значительной высоты или движении автомобиля, сила сопротивления прямо пропорциональна квадрату скорости Fc=β∙v². Коэффициент β дополнительно рассчитывается для высоких скоростей.

Источники:

Для определения силы сопротивления воздуха создайте условия, при которых тело начнет под действием силы тяжести двигаться равномерно и прямолинейно. Рассчитайте значение силы тяжести, оно будет равно силе сопротивления воздуха. Если тело движется в воздухе, набирая скорость, сила его сопротивления находится при помощи законов Ньютона, также силу сопротивления воздуха можно найти из закона сохранения механической энергии и специальных аэродинамических формул.

Вам понадобится

  • дальномер, весы, спидометр или радар, линейка, секундомер.

Инструкция

Перед измерением сопротивления б/у резистора обязательно выпаяйте его из старой платы или блока. Иначе он может быть шунтирован другими деталями схемы, и вы получите неправильные показания его сопротивления .

Видео по теме

Чтобы найти электрическое сопротивление проводника, воспользуйтесь соответствующими формулами. Сопротивление участка цепи находится по закону Ома. Если же известен материал и геометрические размеры проводника, его сопротивление можно рассчитать при помощи специальной формулы.

Вам понадобится

  • - тестер;
  • - штангенциркуль;
  • - линейка.

Инструкция

Вспомните, что подразумевает собой понятие резистора. В данном случае под резистором надо понимать любой проводник или элемент электрической цепи, имеющий активное резистивное сопротивление. Теперь важно задаться вопросом о том, как действует изменение значения сопротивления на значение силы тока и от чего оно зависит. Суть явления сопротивления заключается в том, что резистора формируют своего рода барьер для прохождения электрических зарядов. Чем выше сопротивление вещества, тем более плотно расположены атомы в решетке резистивного вещества. Данную закономерность и объясняет закон Ома для участка цепи. Как известно, закон Ома для участка цепи звучит следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на участке и обратно пропорциональна сопротивлению самого участка цепи.

Изобразите на листе бумаги график зависимости силы тока от напряжения на резисторе, а также от его сопротивления, исходя из закона Ома. Вы получите график гиперболы в первом случае и график прямой во втором случае. Таким образом, сила тока будет тем больше, чем больше напряжение на резисторе и чем меньше сопротивление. Причем зависимость от сопротивления здесь более яркая, ибо она имеет вид гиперболы.

Обратите внимание, что сопротивление резистора также изменяется при изменении его температуры. Если нагревать резистивный элемент и наблюдать при этом за изменением силы тока, то можно заметить, как при увеличении температуры уменьшается сила тока. Данная закономерность объясняется тем, что при увеличении температуры увеличиваются колебания атомов в узлах кристаллической решетки резистора, уменьшая таким образом свободное пространство для прохождения заряженных частиц. Другой причиной, уменьшающей силу тока в данном случае, является тот факт, что при увеличении температуры вещества увеличивается хаотичное движение частиц, в том числе заряженных. Таким образом, движение свободных частиц в резисторе становится в большей степени хаотичным, чем направленным, что и сказывается на уменьшении силы тока.

Видео по теме